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I-,. PREFACE

The first volume of this monograph included the formu-
lation and self-similar solutions to blast waves. The
next step in our exposition of Blast Wave Theory and Compu-
tati,ns then expresses the need for presenting analytical
solutions that, in effect, extend che range of validity of
self-similar ones. The authors found that the one analytical
method that is most amenable to solving different classes
of problems ia the Quasi-Self-Similar Method developed by
Oshima. It was then decided to devote the second volume
of this series to presenting a complete exrosition to this
nmethod that includes solutions to several types of problems,
most are included here for the first time.

--ýIn this volume, after a concise introduction in Chapter
1, the basic blast wave equations are presented in Chapter
I. A novel treatment of the quasi-similar formulation,
presenting it as a zero order solution to a double Taylor's
series expansion is presented in Chapter Ill. Applications
are then presented in Chapter IV which is divided iiato six
parts. The first two parts include solutions to the adiabatIc
point explosion problem, the latter being an analytical closeu
form solution. The third part deals with blast waves in
real gases, where the formulation is presented here in more
details than that presented in Volume I. Blast waves i- a
detonating medium is included in the fourth part, with energy
added in the front. Blast waves in reactive media where the
detonation energy is released in a spacially varying fashion,
are given in the fifth part. Finally, in the sixth part,
the ef•Tects of viscosity, heat conduction and radiation on
detonation are presented.

Tna authors are greatly indebted to Mrs. Ellen Kamel,
Mrs. Janie Abdel Aziz and Mr. Taher Nour for their ability
to produce this neatly typed monograph. The efforts of
Eng. Salah Roushdy in producing the graphs can only make
one wonder at the extent of human endurance.

This work is supported in part by the US. Army Office
of Scientific Research - European Research Office und&r



Contract No. DAJA37-80-C-0342 to the Cairo Center for
Combustion, Energy Conversion and Flow Research (CEFR).
Part of the second author's support as well as a portion
of the manuscript production cost, were defrayed by the
Foreign Relations Coordination Unit of the Supreme Council
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CHAPTER I

NON-SELF-SIMILAR BLAST WAVES

* I.1 INTRODUCTION

Blast waves considered here are geometrically symmetrical, non-steady flow fields

of a compressible medium that are bounded by gasdynamic discontinuities. Gene-

rally they are formed by explosions. The process is governed by spatially one-

*. dimensional time dependent equations expressing the conservations uf mass, momen-

tum and energy, subject to the appropriate boundary cnnditions at the center and

at the front for the particular problem under consideration.

1.2 SELF-SIMILAR BLAST WAVES

In Volume I of this report, it has been shown that under certain conditions the

blast wave equations may be reduced to a set of ordinary differential eqruationls

in terms of a single similarity variable, thus making them ..rnenable to simple

analysis. This may occur, in generdl, when the dependence of the gtdJynamic pa-

rameters on the front cqordinate is anihilated. Such self-similir problems are,
as a rule, characterized either by a constant front velocity, or by a nugligible.

essentially zero, counter-pressure that causes the Mlach number of the wave to

remain infinite, irrespective of its actual velocity. In addition, the specific

heat ratio of the gas, as well as any existing source terms of mdss, momentum or,

energy, may only be admitted as functions of the non-dimensional 3imlilarity va-

riable. If the wave front were moving iito a variable density atmosphere, then

the ambient density dependence should be restricted only to a constanL puwer of

the distance from the center of symmetry.

The power and versatIlity of the concupt of self-similarity hdvu burn dtumtnbLrd-

ted in Volume I by a wioe variety of possible applications.

In many physical situations, however, especially when one is intErutteJ in the

interpretation of experimental recorus, wave front Mach numbers are finite and

the waves either accelerate or decay. Under sucn circumstances simillarity con-

ditions are inapplicable. One then has to take into account thu deperdence C

the gasdynaeic parameters c the problem on the change in conditions at the



front, as well as their change within the flow field. It thus becomes necessary

to contend with a syqtem of non-linec., coupled, non-homogeneous set of partial

d2.fferential e,.ations.

1.3 THE QPiAA-S-1MILAR. 4FTHOD

An analytical rolu_.-,n to this set of equations utilizing the so-called "quasi-

similar" method devel~ped by Oshima (1960, l?62, 1964). By postulating a "sepa-

ration of variables" relatioi between thc dependent and tha independent varia-

bles, then, due to the logarithmic nature of the governing equations, all the

terms containing the front cooroinate may take their values at the front. The

equations, thus, are reduchd to a system of ordinary differential equations,

identical to the self-similar ones, with the depondc'nce on the front coordinate

included only as an additive a•gebraic term that has the front coordinate as a

parameter. An explanation of the theoretical ba3is of the quasi-similarity me-

thod was given later by Kamel (1971). Ha.:proved that the quasi-similarity ap-

proximation is the zerotn-ord'r solution of a double Taylor's series expansion

of the dependent variables.

The numerical solution to the quasi-similar equations, for L.onstant anergy blast

waves, has been tabulated by Lewis (1961) for the plane, cylindrical, and sphe-

rical symmetries with a variety of specific hieat ratios, while Oshima (1960,

1964) obtainod an approximate closed form solution, Thie method was then used

by Lee (1967) to study the non-uniform propagation of imploding shock4 and deto-

nations, while Oshima (UG67) attempted to apply it to the decoupled shock-defla-

gration syscem. Rae (1963, 1965, 1968), on the other hand, used it in conjunc-

tion with his meteoroid impact solutions. Attia (1974) used this method to ob-

tain a non-self-similar solution of blast waves in adiabatic point explutiunb

bused on the criterion of zero particle velocity at the centui of symmetry. In

Chapter XI of Volume I of this report, the quasi-similar method wau useu to ob-

tain a solution to blast waves taking into account real gas effects (Ghuneim,

19751 Kamel et al., 1977b). The problem of non-self-similar detonation waves

was solved by Abdel-Raouf (1982) and that with transport chenomena taken into

account was also solved by the same authcr (1982) Ohyagi et al. (1981) took

into account the distribution of fuel concentration in a reactive mudium by an

exponential model of heat release, in terms of the front coordinate, and ob-



3-

tained a solution for the spherical wave by utilizing the quasi-similar tech-

niquE,.

In this volume, the quasi-similar method of Oshima is analyzed and discussed

briefly, since it is a simple and qualitatively accepted anaiytical ,nmLhod cf

solution which has a wide range of applicability. A wide rangc of pn!uible

applications are included. Theee applications deal with bAast wavet: in in

adiabatic medium; with conduction and ridinion effects and with real gas ef-

fects, as weli as flame and detonation induced blast waves.

@O



CHAPTER II

BASIC EQUATIONS

II.1. INTRODUCTION

The ph6nomenon of wave propagation in gases. constitutes unsteady motion of

the flowing medium, which is governed by the conservation equations, namely

the corservation of mass, momentum, and energy. When the condition of sym-

metry is satisfied, the flow field behind the shock wave is one-dimensional,

i.e., the gasdynamic parameters will then depend only on one spatial coor-

dinate Y , measured from the center of explosion, and the time t , mea-

sured from the instant of explosion.

In this chapter, the fundamental conservation equations are formulated appli-

cable for the three geometrical symmetries; plan~ar, cylindrical and spheri-

cal, without restrictions imposed by a specific form of an equaticn of state

and including any possible source terms of mass, momentum or energV that may

affect the flow field. The fundamental equations are thus, accordingly,

transformed, with the use of appropriate non-dimensional variables and para-

metars, to a most concise non-dimensional form, of Eulerian space profills,

for an arbitrary equation of state relating the int3rnal energy with pre;suru

and oensity. The formulation of the problem is then completed by the 5pwci-

fication of the boundary conditions imposed by a gascynamic discontinuity at

the wave front.

The integral relations, which are the global conservation equatione of •,ass,

monmentufr, and energy, are also formulated in their general form. These rla-

tions serve a dual purposes in addition to providing a check on the accurac:y

of the flow field obtained by solvinX the conservation equations, they al~u

provide means for the determination of the front trajectory.

Finally, the reduction of the conservation equations, boundary conditions &10

integral relations to'their simplest forms for a medium which behaves as a
pe fect gas with constdnt specific heats as well a5 in the case of stro;ng e-

plo!Ein, Or Self-similar motion, is determined,

-4.
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11.2. THE CONSERVATION EQUATIONS

The governing equations, when taking into account possible sources of mass,

mdmentum or energy that may affect the flow field, are expressed, as liven

by Oppenheim et al. (1971) as follows:

r + - (.Y ri) = rrj.

a r +3L [(•Le+P r JP+
T F (11.2)

~ (('~.~)Pr + + ~ (( +. 7,~. Y~~ 44 rr (I1. 3)

where (A is the particle velocity, P is the density, P is the pressure and

e is the specific internal energy. The index J is a geometrical factor de-

fined in terms of the variation of the flow cross-sectional area A with di-

stvnce as:

for plane, cylindrical and sphurical symmetrical flow, cespectively , re m ym-

Ik QS M A -12F and A44r represent the mass, momentum and energy suurc-• turmtn,

ruspectively, per unit mass of the flowing medium.
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11.3. THE EQUATION OF STATE

The governing equations, Eqs. (1L.11 - (11.3), are completed by the equation

of state that expresses the internal energy in terms of pressure and density.

Thus, since e- ( P, ) it follows that

of"IP 7(4 -) U !(14

f,'om the above equation, one has

where subscript S denotes entropy.

While for a constant entropy process, the first law of thermodynamics requi-

res that

where L is the specific enthalpy.

Thus

po'P

ee t v e ni

fr'om the above equation, one has in general



Hence it follows that

defining now a non-dimensional isentropic compressibility, or velocity of

sound modulus

r = (11.6)
UPP

and a non-dimensional internal energy factor

Thus. Eq. (11.5) reduces to

+

and Eq. (II.4] becomes

r -



Equation (11.9) represents the general equation of state in a differential

form.

Taking partial derivatives of the above with respect to the space coordinate,

Y ,and the time, t , respectively, one obtains finally:

and

.-- •*1 •n •e~ti (II.11)

11.4. NON-DIMENSIONAL VARIABLES AND PARAMETERS

The next step is to cast the governing equations, Eqs. (11.1) (11.3), in

their most convenient non-dimensional form. The various non-dimensional va-

rlables and parameters can be properly specified by referring to Fig.II.1

which represents the various blast wave coordinates in the time-space domain.

The origi-. of the system is, as a rule, at t 0 and r= o , and the co-

ordinates of the front are t and r, . With reference to Fig. I.1, the Eule-

rian space profiles are obtained by seeking a solution along t t or

1 , where

Therefore, the following groups of non-dimensional variables and parameters

will be used:'
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i) Physical space coordinates, the independent variables of the problem:

where the first is referred to as the field coordinate and the second as

the front coordinate. The symbol r r) denotes the space coordinate of a

point in the flow field while ( • 3 is the radius of the front OL the

same instant of time, subscript ( 0 3 specifying a reference value. It

should be noted that when the front trajectory Is known, I becomes a mea-

sure of time.

ii) Front parameters, i.e. variables pertaining uniquely to the front

motion and, therefore, are functions of only the froit cooroinateo

a. A' 2t. 1 Vaaa&

Swhere VV,, w is the front propagation velocity, A is the Jecay co-

efficient which expresses the deceleration of the wave front, al is the

velocity oP sound, h" is the Mach number of the wave front.,A is the front

velocity modulus, and Kis the ambient density parameter, while subscript

(6 ) denotes conditions of the ambient atmosphere into which the front of

the blast wave propagates.

iii) Gasdynamic parameters of the flow field, the dependent variables

"de"3cribing the structure of the flow field:

J4 _4 n
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iv) Reduced variables; coordinates of the phese plane:

2

v) The source term parameters:

c) =a'2 a)- rn23r Va 4' V V (11. 17)
nn

11.5. TRANSFORMATION TO NON-DIMENSIONAL FORM

1. Transformation of variables

The independent variables of the problem in non-dimensional form will be

- X ( V t •) and r - C ( , t ). This, consequently, mears that

r r ( , ) and t = t ( , J ), and with the aid of the definitions

of Eq. (11.13), one has for the non-dimensional transformation

+-OX --o r --

But for the Eulerian space profiles, 0 . Thus:

•-- --m-• .- (11.18)
-br rn -Q

and

-0 Ix +

-~ ----

~rt j~ t7~



- 11 -

where

"r; r -rn

Thus

t - Y IA X +1

2. Conservation equatluns in non-dimensional form

Substitution from Eqs. (11.13) - (11.19) into Eqs. (11.1) - (11.3) yield the

following non-linear partial differential equations for the conservation of

mass, momentum and energy, respectively, in non-dimensional form, as given

by Oppenheim et al. (1971):

J : - - e7 5z x :; , , (11 .20 )

where

w(ll.22]

whet-?-



- 12 -

45E± W- W(11.23)

and

+ fa + - ,.4

Equations (II.10) and (11.11) are also, respectively, reduced tc

-,�-i -•q�_ (c.25)-,oz r h •Te z

and

-~~- +• I -7- j€I.

Using Eqs. lII.25) and (11.26) to eliminate o- f-om Eq. (11.24), one gets

=95 (11.27)
-Pe ren.I + -7a

where



Equations (11.20), (11.22) and (II.27) •ogether with the definitions of Eqs.

(11.21), (11.23) and (11.28) represent the governing equations in their ge-

neral form without restrictions imposed by specific equation of state and

including any possible scuices cf mass, momentum or energy that may affect

the flow field.

3. Reduced autnnomous form

The governing equations, Eqs. (11.20), (11.22) and (11.27) may be expressed

in turms of the reduced variables defined in Eq. (II.16). When these varia-

bles are substituted in Eqs. (11.20), (11.22) and (II.27) yield, respec-

tively :

~r4J' tX F(11.30)

and

_0 64e q F f L -1I31.1

Thp above equations can be considered as a set of three algebraic equations

for three unknowns that represent the logarithmic gradients with respect to

X Uf F , . and 9 , respectively. Solving them algebraically for these

grazients, one obtains the following autonomous form of the blast wave equa,-

- - = N+- + F(II.323
41 'x
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+ (11.33)

S.11.34)

As a consequence of the definition of Z one has also from the above

D Z& Z- Z *Z (11.35),

where

2
r(P, Z) (11.36)

= ( ) + r (11.37)

Xr r 1IC

.J.~.... r FT P 1136
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and

F F Z ___41

*4 F~ F- D)_ (11.42)

* ErFF. (11.43)

G_ (11.43)

* while

P (FcP(, A,,~ (11.45)

F- L(F .D) (11.46)
F(I-F



[ PP . r . )D3 (11.47)

0~ -18-

z (11.48)

11.6 BOUNDARY CONDITIONS

In addition to the conservatior, equations and the equation of state, the for-

mulation of a blast wave problem is completed by the boundary conditions which

can be found by solving simultaneously the equations of continuity, momentum

and energy across the shock front. Accordingly, the boundary conditions de-

pend on the problem under study. Generally, there are two types of boundary

conditions:

i) for adiabatic point explosion problem, or when the heat of reaction, in

the case of reactive medium, is distributed inside the flow field, the bounda-

ry conditions or thp Rankine-Hugoniot relations will be determined as follows:

Consider the shown control volume, Fig. 11.2, which contains discontinuity in

flow variables at the shock front. Applying the conservation principles of

mass, momentum and energy between states I and 2, ahead and behind the wave

front immediately, one gets, respectively

and

+ + U2
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Changing to a frame of reference in which the shock wave is at rest, the

above equations yield, respectively

a r (11.491
''1-

= L '-LVr Pn (W U. (11.50)

Pa V4a _ _ _2Sr+ -n (11.51)

where V/, is the front propagation velocity, and subscripts a and n denote

conditions of the ambient atmosphere into which the front of the blast wave

propagates and conditions immediately behind the wave fi'ont, respectively.

ii) in the case of reactive medium, the heat released may be applied to

the blast wave at its front due to laser irradiation or chemical reaction.

The boundary conditions in this case, or the Hugoniot relations, are determi-

ned exactly as above, except for the energy equation which takes the form

+ _A+ + =

_P + LA +2 (11.52) ~

where . is the energy deposited at the front per unit mass of the medium.

Defining the non-dimensional chemical energy parameter

(11.53)



Therefore, the boundary conditions, Eqs. (11.493 - (11.523) will take the

following non-dimensional form, respectively

A

Si (11.55)
tr

+ ' (11.56) -

and

For adiabatic point explosions or for rwactive medium with distributed heat

release inside the flow field, Eq. (11.56) is applied, while for reactive mne-

dium with instantaneous heat release at the front, Eq. (11.57) is applied.

II.7 INTEGRAL RELATIONS

The integral relations for a blast wave are the expressions of the principles

of global mass, momentum, and energy conservation.

1. Mass integral equation

The mass integral states that, at any moment, the amount of mass distributed

inside the flow field should equal that engulfed by the front plus that of

any other source that may affect the flow field. Thus:

nj o
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where is the total naes content inside the flow fleld, while r~i is a

geometriedl factor, dofined by

gl 7r {)

r is the mass of the ambient medium engulfed by the front, thus:

with the aid of Eq. (11.14)

thus

and

i4is the mass that may be added to the flr• field by a source from the

instant of explosion till the instant under consideration, thus

(11.60)

Therefore, the substitution of Eqs, (11.59) and (1I.eO) into Eq. (Il.58)

yields the mass integral

m3'

r~j Yrdr

- I G

La Tsf'
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which for a sourceless flow and uniform., ambient density, , constant, re-

duces to the simple form

S= €-- '" II.6z)
(r;

On the other hand, the mass integral may he obtained directly by integrating

Eq. (I1.1), the mass conservation equation, with respec. to r , from the

center of symmetry to the shock front, to yield

Ao0 t..cr,~-+~~cF (II .G3)

By utilizing Leibnitz rule, the first term gives

which may be substitutri into Eq. (11.63) to yield, noting that c

But, from Eq. (11.49), one has

then

The last equation may now be integrated with respect to time tu ylt2d
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which, after integrating the first term on the right hand sioe by part, re-

duces to the required mass integral, exactly as given by Eq. (11.61).

Now. for constant, and noting the definitions of J. Eq. (II.14),and

w M Eq. (11.17), Eq. (11.61) may be non-dimensLonalized to yield

I

II

OA. j (11I.64)

2. Plomen'~um integral equation

The momentum integral may be obtained by integrating Eq. (11.2), thu ,mumi'entum

con!3arvation, equation, with respect to r from r a to

t n an+•

/B,?

Swhih, n tun, or asouceles faw rducs t

ThE fle S :•,s•"E~rm yzia a1?I,•r utii~±zig L br~ita rulE,
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0 JL

Substituting the above equation in Eq. (11.66), .o teld

By solving Eqs. (11.49) and (II.50) simultaneously, one obtair.c

Fn n UP7- 47Pa -.-

then

Integrating the above equation with respect to time, one gets

'j = Of •ri

(11.67

where is the momentum of blast wave.

Hence, for constant f Eq. (11.67) may be non-dimensionializud to glvu

/ M
~~1 A

+I
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3. Energy integral equation:

The energy integral states tnat the total energy of a blast wave, " should

equal the summation of the energy deposited initially to generate the wave,

the ambient internal energy Pngulfed by the Front, " the chemical

energy liberated in the case of reactive medium, , and the energy due to

sources within the wave, . Thus, for constant:

rd

ni~A; cA s O2 =f~e~ /rdrI.69)

where

/11 JP jr;J

if the heat liberated is considered at the front, thus

i: 0 J-+ I

while, in the case of distributed heat release, C will be obtained as C,

where

Therefore the energy integral will be, in general

_______ c(,cl (117
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For a sourceless flow and heat released at the front, the energy integral

reduces to

rr

i =+ )fr Jr= . 4 + =.11)
*i (11)711

We are going to use the definition of r , the reference radius, as that gi-

ven by Oppenheim et al. (1971) which includes the two most important initial

parameters C £. and P ) of the problem:

(11.72)

Using the deiinition of to' to rep]lce . in Eq. (11.70) by

Thus, the energy integral equation in its general form, Eq. (11.70), can be

expressed in non-dimensional form as follows

+ ; (11.73)

which, for a sourceless flow field, reduces to

+ io
S' +¢+

I 5') - "1+ .
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where

OJfferentiating the above equation with respect to 'dand using the definition

1o' , one can easily obtain an expression for the decay coefficient

(11,75)

while, for adiabatic point explosion, the above equation reduces to

2 (11.76)

11.8 CASE OF PERFECT GASES

As formulated above, the introduction of a general equation of state, e= e(p

leads to two thermodynamic properties, namely the internal energy a-' and the

speed of sound factor r, which include essentially the characteristics of

real gases. However, due to the complexity of the governing equations in

the3ir general form, the assumption that the flow field behaves as a perfect

gas with mean specific heat ratio has a wide popularity in most literature.

1. Properties of perfect gases

Tht3 equation of state of a perfect gas is

=YR" (11.77)

where R is the gas constant and 7 is the temperature. One has also the fol-

hLwing relations:



,
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;%':<e=CvT &- - P '
e-- (11.78)

"where C. is the specific heat at constant volume, and 6 is the specific heat

ratio.

(11.79)

(11.80)

a -- .• ( (1I.81)

ind

• hS= ------ '- •(II.82) .

2. Governing equations

the mais and momentum equations, Eqs. (11,20) and (11.22) remain unchanged,

wnile energy equation, Eq. (11.27), becomes, for ? - constant and noting

that

-+ A (11.83)

where

(11.84
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3. Boundary conditions

Equation (11.54) of the boundary conditions remains unchanged, while Eqs.

(11.55) - (11.57) reduce, respectively, to

g~~n +,~ (11.85)

n (11.86)

for adiabatic point explosion problem, Eqs. (11.54), (11.85) and (11.86) yield

the familiar boundary oonditions for blast waves, namely

hn = _ 1 8

and

1 3 (11.90)

while, for the reactive medium with heat released takes place instantaneously

at the front, Eqs. (11.54), (11.85) and (11.87) yield

Ux•-4) 4L- ) •2 .(,j (1]
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For any given shock strength 1 , there exist two possible solutions repre-

sented by the two signs in Eq. (II.91). The plus sign denotes the overdri-

ven detonation solution, and the minus sign the weak detonation solution.

The unique Chapman-Jouguet solution is obtained when the two solutions coin-

cide, i.e. when the terms between square brackets in Eq. (11.91) equal zero,

yielding

i-.., -
i:i

with tne minus sign applying for detonation, while the plus one for deflagra-

tion. In general, only the overdriven detonation solutions are of interest;

and one may discard the bottom sign in Eq. (11.91) for weak detonations.

Thus;

and

C '.- -j.,4~I(J)Q J- I (11.94)

The other two boundary conditions for hn)end are stiii applied through

Eqs. (11.54) and (II.85).

4. Inte•ral relations

The mass and momentum integrals in the case if perfect gases are not changed

ard have the same forms, given by Eqs. (1I 64) and (11.68), except for the

momentum integral, Eq. (11.68), r changEs to . While the energy inte-

roL
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hx-'2z -

+ -(4l)(--•) +- )-/l.)IA•d: (11.95)

which, for a sourceless flow field, becomes

. = -i _ _. _ _)il'-I

AL~I)~4 +14 (11.96)

and, the decay coefficient takes the form

PF

S 3 - (11.97)

which, for adiabatic point explosions, reduces to

11.9 CASE OF SELF-SIMILARITY

The oelf-similar motion of a medium is one in which the number of independent

variables in the fundamental system of equations is reduced from two to one,

thus, the system of non-linear partial differential equations is reduced to a

system of ordinary differential equations. However, the value of this solution

is confined to the early time regime when the shock wave is strong enough to

neglect the effect of counter-pressure. This, consequently, means that the
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front propagation velocity is very large approaching infinity. Thus,

!0

1. Governing equations

Substituting this condition of self-similarity into governing equations, Eqs.

* (11.20), (11.22) and (11.27) yield respectively
l..

h÷ +

3 J 9 
(11.102)

For a perfect gas, the energy equation reduces to

(11.103)

whoiti a is given by Eq. (11.84).

Thu above set of equations is an ordinary differential one, which can be solved

numerically once the source terms are specified.

2. Boundary conditions

Tho3 boundary conditions in this case are simply obtained by putting j 0 in

Eq,3. (11.55) - (11.57), while Eq. (11.54) is still applied without any restric-
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"tions. Thus, one has the following relations

6n fr) (11.104)

2

6-n (11.105)

where Eqs. (11.56) dnd (11.57) reduce to a single equation given by Eq. (11.105).

This means that the heat released at the front is negligible in the self-simi-

lar solution compared to the initiation energy, , which is the predominant

parameter governing the flcw field.

For a perfect gas, the boundary conditions, Eqs. (11.54), (11.104) and (11.105),

yield the following relations:

•'÷ I(II.J06)

fn (1.107)

k rl (11.108)

3. Integral relations

The mass integral, in this case, is given by Eq. (11.65), since for strong ex-

plosions the double integration in the right side of Eq. (11.64), which includes

the effect of mass source term, will equal to zero. On the other hand, the
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energy integral still takes the form

while the right side oF Eq. (11.73) leads to a trivial solution of

rhus, the energy integral is obtained by numerical integration of Eq. (11.109)

From the flow field solution.

Eiquation (11.109) is reduced to the following relation in the case of perfect

gases

frio t) h +""(1I.110)

while the decay coefficient takes the following simple form

II.10. COMPATIBILITY EQUATION

At any time, the particle velocity at the center of symmetry must be equal to

zero, that is

This represents a compatibility equation which must be satisfied by the correct

tolution. This equation in non-dimens.onal form can be written as:

(11.112)
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Figure Captions-

Fig. II.I. Blast wave coordinates

Fig. II.2. Control volume of a blast wave
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CHAPTER III

THE QUASI-SIMILAR SOLUTION

11.1. INTRODUCTION

Tht conservation equations, as derived previously, are highly non-linear, rion-

homogenuous, coupled, partial differential equations. Therefore, a closed form

*,• solution is so far impossible, and approximate -olutions appear tri be essential.

Mainly, three analytical techniques are used for predictir 6 the non-self-similar

flhw field of a blast wave, the perturbation method of Sakurai (1965), the qua-

si similar method of Oshima (1960, 1964) and the power density law of Bach and

Let! (1970).

In this chapter, the quasi-similar technique will be discussed briefly with a

cowplete description and derivation of thiu method of solution to be applicable

for any type of problems.

111.2. TAYLOR'S SERIES EXPANSION

To obtain the approximate quasi-similar solution, one has to perform, firstly,

a double Taylor's series expansion on the dependent variables. As mentioned

priviously, any dependent variable of the problem is a function of the two inoe-

puiidcnt variables 9 and r . Vhus, for any dependent variable • , the appli-

calion of the double Ta-iur's seriws expansion yields

_jX Th 21

+ I2(,x a.)Yb ..) +.
ex b )a.l' 10 ~ L(Ž~

+ 3(-4) (3- b)+, 3 ( -4....13III l

-36-
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where ex and b are the values of " and • , respectively, in the neighborhood

of which the solution is to be obtained, provided that the function • (Zj)

together with its partial derivatives up to ih nth order are continuous in the

neighborhood of the point ( a., 6 3.

Since one's interest centers upon the region of the flow field near thu wave

front, for any value of Mach number, onu may set

anrJ 
-

Eq. (111.1) then reduces to

S* .. . . .111.2)

It now becomes ,,ossible to substitute the above equation, of course with I
, * and g , in the equations of motion and proceed to ohtain the expansion

solution in the normal fashion.

WiLh reference to the autonomous equations (IX.32) - (11.34), only the quanti-

ti,!s subscripted by , will be expanded, thus yielaing a set of first-order

ordinary differential equations iuentical to those of the self-sin'ilar case ex-

cejt that the dependence of 3 , or , is included only a. additivu ilgebraic

tekms. For any dependunt vdriLible , the autonomous equations 'ivu

I L Y+% (111.3)
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where D and F -re defined in Eqs. (11.36) - (11.48). The above

equation may now be put in the form

which, by differentiating with respect to 3 , yields

~ J

where the order of differentiation of the term on the right hand uide ha.i been

interchanged. Thus, with the aid of Eq. (111.2), one has

or

and

h enotin Ž- - ---ya.

wh,.,re, denoting "• by a prifme,
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*jF+F (III.6b)

XD A~DPX

and

D X0

with

-i F i(F- A +! + (F- 1)(F'-
+, j- (r- F'+-F r po

F-( (J•F T']fz'(_)r '

-F -1 Z z (111.7)

r r -r& , rF9 f

•' [z' (_(M.8)F
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rr (I )0FT

rF

while

3 - -~fKF I-F)- F)

+ .. ]•H (L-) (111'.ii)

+ HH . LIII.12)

D-I

an~d

-~ ~ ~( F+' '+EY•r 'rF)•+g , (111.13)
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C7L. r(F,'" + F ) + ÷ + 2

where

'= ~~ ~ ~ * F ' '-(•- )(I (111.16)

Now, for simplicity, consider the case of perfect gas with constant specific

heats and constant X . For adiabatic point explosion, the boundary condi-

tions are given bv Eqs. (II.88) (11.90), and since

one may then evaluate Eqs. (111.7) (111.16) at X - , by noting that

F M
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hr1 _
!+

C•_i +•=
Or- I +______I

IJ

II

ft

The above equations, then, give, for any o.rder of the expansion, algebraic ex-

presion for and " . These may be substituted

in rS . H, , and Cr, respectively, to yield a set of first-order autono-

mous differential equations with respect to the field coordinate 2t , where ,

Sand its derivatives appear as parameters. The gasdynamic flow fields may

now be obtained for each value of ,where ý and its derivatives are found

either from, experiment or from the energy integral, by integrating these auto-
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"nomous equations.

111.3. QUASI-SIMILAR METHOD OF SOLUTION

The concept of the so-called Oshima's "quasi-similar" solution states that the

derivatives of all dependent variables with respect to the front coordinate,

or • ,are considered constants in all of the flow field and equal to

those corresponding to X = . This concept arises from the fact that the

variations of the dependent variables P h , and 9 are not sensitive to

the independent variable J , or % , as compared to their variations with the
L other independent variable .However, this assumption causes the solution

to be accurate for high Mach numbers, corresponding to small values of Y ,

and Just behind the wave front.

From the mathematical point of view, this method of solution may be considered

as the zeroth order of the Taylor's series expansion of a function of two in-

dependent variables. It follows from Eqs. (111.5) that 4

° -f. = (2) (III.17a)

This leads Oshima to express the non-dimensional dependent variables in the

following form
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and

Differentiating the above equations with respect to d , one obtains

-~ fx~tl _____ _____(III.18a)

S~d 'd
= (III. 18c)

Taking the values of • ( • ), hz C • ) and 5• C • ) as their values at the

wave front, yields to the required solution.

For constant and when the medium may be considered as a perfect gas with

constant specific heats, Eqs. (111.18) may be obtained simply from the boundary

conditions of adiabatic point explosion, Eqs. (11.88) - (11.90), or from the

boundary conditions of reactive detonating blast waves, Eqs. (11.54), (11.85)

indl (11.93).

1. Adiabatic point explosion

In this case, one obtains from Eqs. (11.88) - (11.90)



- 45 -

'9_ Jc•1) ___r _ ni1•

S = -(III.19b)

Substituting Eqs. (11.86) - (11.90) as well as Eqs. (111.19) into Eqs. (111.18)

yields, respectively

-11 _ .I(111.20)

"• - • •(III.217Tk

.2 k (111.21)

and

- __________(111.22)

Substitution of Eqs. (111.20) - (111.22) into governing equations, Eqs. (11.20),

L]I.22) and (11.83), yields, respectively

+ +, L + (111.23)h ~x '

F -T Aj (111-24)
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k "E (111.25)

where

4-

-cr -1)

Thus, the quasi-similarity assumption has reduced the set of non-linear par-

tiial differentail equations to a set of ordinary differential equations with-

uut making the strong shock approximation.

Solving for the derivatives .• , and AL in Eqs. (111.23) (111.25),

one obtains

(111.26)

[ 51 (111.27

= ~ P +AF Cot, (II2
4,%

+~~ (11.8
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2. Detonating blast waves

Applying the same previous procedure, one arrives finally at the same Eqs.

(III.26) - (111.28), except for the parameters 4 , • and C , which will,

with the aid of Eqs. (11.54), (11.85) and (11.93), take the following form . .1

B _= .•.--a. 5

"- *

where

L 
-

111.4. ADIABATIC INTEGRAL

In order to find a check on the numerical method used for solving the governing

equations of the quasi-similar solutions in the case of sourceless adiabatic

flow fields, one may derive an intermediate integral, the so-called adiabatic

integral. The continuity and energy equations, Eqs. (111.23) and (111.25)

can be3 rewritten for sourceless flow fields as

(P- ) ,6h 1. iL_ + L4=o-'f-X- + iL * (111.29)

K
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with

(3nd

To fipd the adiabatic integral from the above two equations, one may multiply

the first of them by an integration factor Yf and then subtract Eq. (111.30)

from it, one obtains

4. .÷. • (•'..4. C ) - 0 (III,31)

For the above equation to be integrated, the value of the integration factor

Swill be chosen as to satisfy the condition

fz-oin which one gets

Or, with the use cý the definitions of , and C
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= 2~% ~(111.32)

Therefore, Eq. (III.31J will be

which yields upon integration

T [hx'(-.']

where K ig a constant of integration which can be determined from the boundary

conditions, Eqs. U11.88) - (11.90), one gets

K ±± (I.J,)

Therefore, the adiabatic integral will be

/('v. 1,. 2 - ,14, 6 + I- IC

".1(1 .- .33

In the case ')f strong explosions, • = 0 and A = 1.+e , the above integral re- -

auces to

. .> ¢
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* f~xP) L. (.4 (111.34)

The adiabatic integral, Eq. (111.33), has been uied as a check on the precision

of machine computations. The step size AX in the Runge-Kutta method was

assigned different values until the values of C , h and 9 , obtained from

the numerical calculations, satisfied Eq. (111.33) in a desired accuracy.

111.5. SINGULARITY ANALYSIS

In order to analyse the singularities of the governing equations, it iv more

convenient to transform them into the phase plane, i.e. in terms of the reduced

variables F* and Z defined by Eq. (111.16), which are, for a perfect gas

-(X,') =I and F( _j 9) (111.35)

In the governing equations for quasi-similar solutions, one has derivatives

with respect to X only while the variable • appears as a parameter. There-

fore, one can write

1 14Z j1 &k.d~.

and

The above two equations combineo with Eq. (111.35) when substituted in Eqs.

''111.23) through (111.25) give for a sourceless flow field
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(R)~A .rI~. 1 'If a. .. 0 (111.36)

AZ- FJ- +] a" +~ ("Fi d) o C III.36) "

2F

Solving for the logarithmic derivatives PO •.hX and "i , one

gets

(A, =-) - A r(F- 1) 8 + Z (A C/A) ,, (111.39)

(F. I FeF W+ F(F 1)(J '1' - Z [FI6J 1)+A C J

- )a

(111.40)

rm - ( c- 1)2 + ý)S F(_ ) 8 - Z (r-C) -

Z 0 rconditions. + ) ( 1 e 11in e.41)

The RanKine-Hugoniot conditions at the shocK front can be rewritten in terms



of the variables Z and F by combining Eqs. (11.88) through (11.90) with Eq.

(11.16)

0 - !) ) (111.43)

Eliminating 1 from the above two equations, one obtains a relation butween

Zn ,nd I . It is

It is obvious that the solution of Eqs. (111.26) through (111.28) will diverge

whun the denominators vanish. This will happen UL the values of X given by:

=o0 (III.45a)

(III.45b)

(III.45c)

Tho divergence of the solution at X 0 may be avoided by expanding the fluid

properties in terms of X near the center of symmetry. The continuity arn

momentum equations for a sourceless flow field, after some algebraic manipula-
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"tions, can be written as

bt -a .ar 0(111.46)

+ Upa (,2) + i-(P(A" + 0 (111.47)

Integrating Eq. (111.46) with respect to V- , one obtains

undef the condition that (= 0 at r" 0, the constant in the above equation

will be zero, and this equation becomes

b•(•%r Y••-- -) (111.48)
rr

In a similar manner, Eq. (111.47) upon integration with respect to r yields

Also, in order to determine the constant in the above equation, we use the

condition that (. = 0 at r = 0. Hence, the above equation becomes

P(r~t) =P(OAt) -P .jt 4 j ~ (111.49)
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Differentiating Eq. (111.48) with respect to time and substituting into the

above equation, one gets

ir

"p(t) P(o~t) _ Pu.- Jje =* + r (111.50)

Assuming that the density ,pri:) can be expanded in the following power

series near the center of symmEtry

( = r•[f t)÷j(t) r÷ 4(*) + (111.51)

where ot is a constant and the coefficients .R- * .¶ , o.. are functions

of time only.

Substituting the preceeding series into Eq. (111.48) and integrating with

respect to r , one obtains the velocity profile represented as a series of

the form

U (A *) 4 C t(h.. *).+ U, (t) r + U.(t) r (III.52)

where the coefficients U, , P U-- are functions of time only.

Substituting from Eqs. (111.51) and (111.52) into Eq. (111.50), one finds

that the pressure can also be represented as a series of the form

= Pc~t)~. rCt)~. ICk 'I(+ F ) r'4... (111.53)

where P(ot) a ,- P ' P2 . are functions of the time only.

For convenience, the three series for the density, velocity and pressure can

be rewritten in a non-dimensional form as



+ +

where the coefficients ho IA.,. AA .--- a..• ./, . nd
S9 ' are functon of only

It is evident that fcr small values of X , i.e., j%.€•c the following

asymototic formulae hold

(111.57)

h k. X~ ~(1I.55)

S = h. %' (111.59)

The fact that the velocity profile is linear near the cunter of uy11MIU•L'y in-

dicates that the value of P19 will be finite and no divergence of the aolu-

"tion will occur.

Bucause one cannot proceed with thu numerical solution till thu cuntur of

synrvitry, the solution will bL based on matching the numurIcal uijlution,

from X 1 to X , with thO aaysiptotic formulae fur P . ,r~ I

given by Eqs. (111.57) - (111.59), provided that the value of i iiuwt bu al

small as possible.

In terms of the reduced variables " and Z , the other, two singularitius,
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given by Eqs. (111.45), correspond to

F= (111.60)

Z• (111.61)

The value of the variable F at the shock front is given from Eq. (111.43)

while its value at the center of symmetry is obtained by substituting X 0

in Eq. (111.55). It gives

=0 9 80

Therefore, the range of variation of P is given by the inequality -

The relationship between Z and F' has been obtained by solving Eq. (111.41)

numerically as F ranged over its valuo at X - I to its value at Z - 0.

Since the value of A is not known a priori, an iteration procedure is per-

formed to search for the correct . The correct • may be obtained based

on satisfaction of the energy integral equation, Eq. (11.98), or it may be

found when it satisfies the condition of zero velocity at the center of symmne-

try, Eq. (11.112). When the value of ;k is greater or less than the correct

one, the solution will diverge at some non-zero values of X corresponding to

the singularity F = 1 or Z =(I-F)t

Furthermore, from the theory of ordinary differential equations, the slope
will take the indetermined value S- when both the numerator and denomi-

nator on the right hand side of Eq. (111.41) vanish simultaneously. This will

correspond to a number of singular points given as the intersection of the

isocline of zero slope with the isocline of infinite slope.
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The isocline of zero slope is given from the following equation

Zfj(F- I i JFYF"-..1) 2F8] 22 Z (F-~ -1 (F- 1)A~J (111.62)

whilu the equation of the isocline of infinite slope is

.,)r( ) ;k ,(F- O) 8 - Z A M + 0 (111.63)

Solving for Z from Eq. (111.63), one gets

2 = F(F- 1)2 1 )F(F-l)"

F (1+1) + CI (A

Substituting the value of Z from the above equation, one obtains an expression

for the values of F at the singular points. These values are obtained from

the roots of the equation

(F- ) f(J) F(F-I)..Are I aF-l.~ A (F- 1) C

A,,-2 F(F'. 1 + A ;(F. 0)8 (111.64)

F'i4 +2'A4(C/&)

At each value of • , the roots of the above equation can be obtained numeri-

cally using a root search technique. Depending on the value of . , singular

points may exist inside the field F"(-.-.)(I-i) . With the correct

value of ' satisfying the condition f(oe'J) o * the roots of the above

t2quation lie outside the field and the solution is free from singularities.



CHAPTER IV

APPLICATIONS

IV.l. ADIABATIC POINT EXPLOSIONS*
iN.

i) Introduction

In this section, a detailed solution for the non-self-similar blast waves in an

* adiabatic medium is obtained. The three geometrical symmetries of blast waves:

spherical, cylindrical and planar are considered. The flow field is considered

as a sourceless one, while the medium is treated as a perfect gas with constant

specific heats. The solution is based on satisfying the condition of zero par-

* ticle velocity at the center of symmetry rather than the constant energy crite-

rion. Using this condition, a considerable saving in the numerical solution

steps is achieved. Finally, the accuracy of the present solution is discussed

by comparing it with other solutions.

ii) Problem Formulation

The basic equations governing any gasdynamic problem are given by Eqs. (11.20),

(11.22) and (11.27). For a perfect gas with constant specific heats, a source-

less flow field and uniform ambient density, these equations may be represented

as:

x :1 + -i : (IV.1.l )

and

The boundary conditions of the problem are given by the Rankine-hugoniot rela-

"This application is based on Attia (1974).

58 -
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tions, Eqs. (11.88) - (11.90), which may be rewritten as follows

Rn = ~l, ) = -- '(IV.l.2)

and

where

The application of the quasi-similar approximation on the governJng equations,

Eqs. (IV.l.1), yields the following ordinary differential equations, as given
I

by Eqs. (111.23) - (111.25) when all 's vanish

(f-X) 0 i= .• Ft = (IV.l.3)

and

() + (A + AJ 0Co

where
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P3 ÷Ia./3)9

+(I p).

S2 (1-t e

and

Equations (IV.1.3) may be put in the following autonomous form, as given by

Eqs. (111.26) - (111.28), with all s set to squal zero

-x) + dz .- I.)Z

C__ -' + i + t •) cVl

and

- h [C-x) + F ]

An overall check for the denisty profiles is the mass integral, Eq. (111.65),

which can be rewritten as

4. ÷' t

Furthermore, multiplying the first of Eqs. (IV.l.3) by X and arranging terms,

one has
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Integrating the above equation with respect to X from X =0 to X ,one

gets after some algebraic manipulations

/xh ./ (x•'k (4I+4)fkKi=f ( d( IftO + X'•.+ i÷ ÷k i =o
0 Q 0

which gives

h, 7 (f_ I) I+ fA')JkXJ' X =o
0

Using Eqs. (IV.1.2j, ine obtains

fsimilaX a (IV.i.6)

Consequently, the density profile obtained by the quasi-similar solution does

not satisfy the global mass conservation. However, it should satisfy the quasi-

similar mass integral given by Eq. (I\/.1.6).

The difference, ( ,between the two mass integral equations, which represents

the inherent deviation introduced by the quasi-similar approximation, can be

obtained from Eqs. (IV.1.5) and (IV.1.6) as

or

-_ +A
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Since both P and A are functions of J the error in the mass integral is 4

also a function of • . It is obvious that the error is zero when A 0 and

this corresponds to • = 0 which is the self-similar case.

The energy integral, Eq. (11.95), is reduced to

while the decay coefficient . takes the form given by Eq. (11.98), which is

32 - •("£ I.lB

THe adiabatic integral, Eq. (III.33), which is used as a check on the precision

of the numerical solution, may be rewritten as follows

with

S= 2 ,c- •,)

Trh, solution is considered to be correct when it satisfies the uumpdtibility

oquation, Eq. (11.11, that is
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( 0Coj ) = o (IV.l.l10) 4

iii) Solution

The governing equations of the quasi-similar solution in their autonomous form,

Eqs. (IV.l.4), which are coupled ordinary differential ones, are subject to the

boundary conditions given by Eqs. (IV.l.21. ,These equations can be easily inte-

grated numerically, once the correct value of % at a specific ý iE determined. I

There are two criteria for evaluating the shock decay coefficient k . One is

based on the conservation of total energy behind the shock and the other is

based on satisfying the condition of symmetry, namely, • 0 at the center of

symmetry. Although only the latter is used in these calculations, it may be

interesting to summarize the steps of calculations which one may follow to de-

.termine the correct PL based on each criterion.

First of all, one should chose the values of step sizes of both X and . The

whole range of I (o.4-1.0) is divided into small intervals, not necessarily

equal. The step size &% is kept constant throughout the integration inter-

vals, and assigned different values until the values of F , h and * ob-

tained from the numerical calculations, satisfied the adiabatic integral, Eq.

* (IV.l.91, with the desired accuracy.

If the solution at £ is known, then the solution at ( • =

S.• (ha); ), based on the constant energy criterion, may be computed as fol-
lows

a) At the value of 1 : ,the boundary conditions P (1, '1( ),
k (1, ) and 9 (1, ) can be computed from Eqs. (IV.1.2).

b) A trial value of the decay coefficient 2 is then chosen and Eqs. (IV.1.4) "

can be solved numerically.

c) The value of the energy integral function can then be determined

from Eq. (IV.l.7) using any numerical integration method, for example, thu,

Simpson's rule.

d) For small intervals in • , the derivative -" in Eq. MIV.l.8) can be "..]
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put in a finite difference form as

cT A 1331

Thus a calculated value of A is given by

S(J,),. Lr

e) The above procedure is repeated for other 'trial values of • and a curve

between the calculated values and the assumed ones may be drawn. The correct

value of A will be obtained as the intercept of the 450 line with the above

curve and, with this correct value, the profiles of the various fluid proper-

ties are then determined.

f) Having computed everything at • = on, can proceed further until

the solution is obtained for the whole range of

To obtain the starting conditions for this computational procedure, one simply

substitues • * 0 at the system of Eqs. (IV.l.4). They become

and

d1
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Similarly, the substitution of 1 = 0 into Eq. (IV.l.8) yields

+

The boundary conditions, Eqs. (IV.l.2), become

and

Fortunately, this system of equations has been solved exactly using the concept

of self-similarity. Thus, the value of ý3) (a 0 0) can be determined and
0

is used as the starting value for the computational procedure.

On the other hand, the solution based on zero particle velocity at the center

of symmetry, which is applied here, required the following calcula*ion steps:

a) At any value of Y , the boundary conditions f(1s•) * k(I,) and

can be computed from Eqs. (IV.l.2).

b) A trial value of the decay coefficient A. is assumed and Eqs. (IV.I.4)

can be integrated numerically. Oue to the singularity at the center of symme-

try, the integration is stopped at X= X which is arbitrarily close to X = 0.

c) The velocity at, the center of symmet.j can then be obtained using Ii-

near extrapolation from X• X to 0 = 0.

d) Ihe above procedure is repeated for several values of assumed decay co-

efficient and a curve is plotted between the assumed value of • and the velo-



city at the center of symmetry. The correct value of is obtained as the

intercept of the above curve with the line f 0.

e) With the correct value of , determined, the flow field parameters are

to be obtained by matching the numerical solution, as X ranges over from

= 1 to • , with appropriate asymptotic formulae valid from X X

to 0 0, as that given by Eqs. (111.57) (111.591, which are

and

' The value of is determined as

'consequently, the velocity at any value of X E is given by

L~nu may now proceed to uetermine the density and pressure profiles near the

L.nter. The exponent o4 can be determined from the following relation
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where &X is the step size used in the numerical Iterati", integration.

"Having computed o( from the preceeding equation, the value of the function PL,

can be determined from

ho () =. ______•

Thus, the density at any value of X • X can be obtained as

In order to find the pressure profile near the center, one must first determine

the functions (0) and 9an) . They can be obtained as the solution

of the two simultaneous equations

and

9~~~ ~ A2. X), 2)~ ,1 ~~

Solving for the unKnown functions cj (•) and 9('o.¶J), one obtains

(o (x) -J)
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and

9~ (Z fx* R

consequently the pressure at any value of < . : is given by

iv) Results and Conclusions

The self-similar solution is illustrated in Figs. IV..l to Fig. IV.1.4 j

It is seen that the pressure immediately behind the shock wave is a maximum

and falls off quite rapidly near the shock wave to a nearly constant value for

X 4 O.5. As expected, the fall-off in pressure is greatest for the spherical

case, with its greatest freedom for expansion, and least for the planar case.

The same tendency is even more accentuated in the density profiles, where it is

seen that nearly all of the mass of the gas engulfed by the blast is concentra-

ted close to the shock front itself. The effects of pressure and density chan-

ges are reflected in the temperature profiles, since 7 a P/.? . It is seen

that, subject to the assumption of an inviscid, non-conducting and non-radia-

ting gas, enormous temperatures are developed towards the center of the blast,

as a result of the prevailing vanishingly small densities and finite pressure.

This is particularly marked in the spherical case. The particle velocities de-

crease from their maximum values immediately behind the shock front to zero at

the origin of the blast. It is observed that the curves differ only slightly

in the range 0.5/x< 1. At any given X , the spherical flow velocity is the

lowest and the planar velocity the largest.

During the decay of the shock front from its strong limit, self-similar case,

to a sound wave ( 1 = 1), the quasi-similar model is used to predict the non-o
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self-similar case based on satisfying the cc'idition of zero particle velocity

at the center. This criterion is, of courE, not new. It was used previous-

ly in finding higher order terms in the perturbation technique (KorobeiniKov

and Mel'niKova (1962); Bach and Lee (1969]).

Conditions behind the shock, as given by the solution based on the above men-

tioned criterion, are shown for air ( K 1.4) in Figs. IV.l.5 - IV.l.16:

"they define the motion and the changes of the state of the gas in the three

cases for J 0, 1, 2 and for different values of the shock wave Mach number.

It is observed that the decrease in the shock Mach number causes the pressure

to be uniform in the whole range until the Mach number approaches unity

where the pressure becomes vanishingly different from the ambient pressure.

It is also seen that at, high values of the shock Mach number, (tr >, 3) the

density falls off very rapidly behind the shock. At low values of the shock

Mach number, the mass engulfed by the front becomes equally distributed inside

the wave and the density approaches the ambient density Sa everywhere except

at 0. Particle velocities decrease as the time passes and tend to zero

when the shock wave attenuates to a sound wave.

The usefulness of the derived asymptotic formulae, Eqs. (111.57) - (111.59),

is apparent in the neighbourhood of X a 0, where the original equation shows

a singularity. In this region, the velocity distribution is linear. Close to

zero, the pressure is finite and a,.ymptotically constant to the X coordinate.

The density approaches zero very rapidly indicating that the gas is displaced

from the center of the explosion. The temperature distribution T64 P/1 showE

a steep increase to infinite values.

In the course of high temperature processes within the blast th,ý specific heat

ratio, • , differs from its initial value of 1.4. Therefore, the solution is

also obtained, when assuming air to behave as a perfect gas with a constant

average value of specific heat ratios of 1.2 and 1.3. Figures iV.l.17-IV...20

:how a comparison between the distribution of fluid propertius behind tho wave

front for the special case of J l, 11 5. The trend i, thu sarru for other

values of tj as well as for other types of blast waves (i.e. i 0 dnd 2).

The accuracy of satisfying the adiabatic integral, Eq. (IV.l.9) is the crille-

rion for the choice of the step size AIX in the Runge-Kutta fiertive int•,-
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gration. Figure IV.l.21 shows that for X = 0.01, the adiabatic integral is
-70• satisfied within 1 x 10 It is also seen that at first the error decreases

quite rapidly with the step size and then becomes almost constant for t•9 "

0.005.

The integral curves in Z- 7 phase plane where Z e and F r- , are

shown in Figs. (IV.l.221 (IV.I.24) for different values cf the shock Mach

number. All the curves start from the Rankine-Hugoniot curve and all of them

tend to infinity corresponding to PC = 0. It is seen that the locii of the

singularity Z l - F )2, Eq. (111.61), and the singularity F = 1, Eq.

(111.80), do not intersect with any of the integral curves, i.e. the solutions

are singularity free. Of course, all the integral curves are drawn with the

correct value of \ satisfying the condition f(d) 0.

The effect of inserting values of 2k in the differential equation that are

* less or greater than the correct one is indicated in Fig. (IV.l.25) where it

is seen that for ý, less than the correct one, the singularity 1 is en-

countered while for \ greater than the correct value, the singularity2 =-F 0.

is reached. S

It may be observed from Fig. IV.l.26 that a considerable error is obtained in

the mass integral which means that the density profiles are not accurate.

However, the comparison made in Fig. IV.1.27 between the present solution and

the solution of Bach and Lee (1969) indicates that the present solution has a

wider range of applicability and, therefore, it gives a reasonable description

of the shock trajectory.

The Rankine-Hugoniot shock conditions, which represent the maximum damage oc-

curring due to the passage of tne blast wave, are shown in Figs. IV.l.28 -

IV.l.31. It is observed that when the blast expands, the pressure, tempera- -

ture and density behind the shock wave approach the atmosphEric conditions

while the velocity behind the shock wave tends to zero. The reldtiun of the -

shock wave attenuation is shown in Fig. IV.l.32, where it is seen that the

shock Mach number approaches unity when the shock radius tends to infinity.

The relation between the shock radius and the time is shown in Fig. IV.l.33.

The decay coefficient obtained by the present criterion is shown in Fig.

IV.l.34 as a function of ý' for the three types of blast waves: spherical, cy-
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lindrical and planar, I

V[' The present calculation is compared with that of Oshima (1964) in the A- j

curve, as shown in Fig. IV.1.35. It is seen that the present results give a

slightly greater vwlue for the decay coefficient. However, since the flow

field is very sensitive to \ , this slight change may change the flow field

considerably.

It should be noted that either the zero particle velocity criterion, or thu

energy integral criterion is sufficient in iterating for Lhe correct solution.

However, it was found that the solution based on zero particle velocity at the

center is by far more sensitive than the energy integral to very small varia-

tions in k as it approaches its correct value. Hence, highe. accuracies in

the solutions can be obtained using the zero particle velocity criterion. Fi-

gure IV.1.36 shows the viriation of the particle velocity at the center PO,•)

with the assumed value of . It is observed that any small change in the

value of the decay coefficient produces a considerable change in the velocity

at the center. In the present calculations the velocity at the center is con-

sidered zero when ),(oi)) • 10-4.

The iteration by the energy integral criterion is not rapidly convergent. Fur-

thermore, when 9k approaches its correct values, the properties of the solu-

tion by the zero particle velocity criterion, such as the position of the sin-

gular points and whether the velocity at the center is positive or negative,

may indicate the direction for the correct values of the decay coefficient. In

addition, reducing the step of the numerical integration, results in a consi-

derable saving in machine time.

The difference between the results obtained from the two criteria ls due to

the quasi-similar approximation which reduced the partial diffefential equa-

tjcn• to oroinary differentia3 ones, It should be noted that if the governin.

JLJLtions wars sclved exactly, the two criteria would result in thG ýji,, vo-

lues of the decay coefficient and thL, flow field variables.

m • • •
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Figure Captions

Fig. IV.1.1 Self-qitmilar pressure profiles for intense planar, cylindrical

and spherical blast waves with • = 1.4.

Fig. IV.1.2 Self-similar density profiles'for intense planar, cylindrical

and spherical blast waves with ' = 1.4.

Fig. IV.l.3 Self-similar temperature profiles for intense planar, cylindri-

cal and spherical blast waves with '4 = 1.4.

Fig. IV.1.4 Self-similar velocity profiles for intense planar, cylindrical

and spherical blast waves with " = 1.4.

Fig. IV.I.5 Pressure distribution behind the wave front for spherical blast

waves at different values of the shock Mach number h while

1.4.

Fig. IV.1.6 Density distribution behind the wave front for spherical blast

waves at different values of the shock Mach number t while

6 :1.4.

Fig. IV.1.7 Temperature distribution behind the wave front for spherical

blast waves at different values of the shock Mach number

while • = 1.4.

Fig. IV.1.8 Particle velocity profile behind the wave front for spherical

blast waves at different values of the shock Mach numbur

while ' 1.4.

Fig. IV.1.9 Pressure distribution behind the wave front for cylindrical

blast waves at different values of the shock Mach number tj

while ' = 1.4.
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Fig. IV.1.10 Density distribution behind the wave front for cylindrical

blast waves at different values of the shock Mach number 11

while b = 1.4.

Fig. IV.,.11 Temperature distribution behind the wave front for cylindri-

cal blast waves at different values of the shock Mach number

M while • = 1.4.

Fig. IV.1.12 Particle velocity profile behind the wave front for cylindri-

cal blast waves at different values of the shock Mach number

r while ' 1.4.

Fig. IV.1.13 Variation of the pressure profile with the shock Mach number

1 for planar blast waves while d = 1.4.

Fig. IV.1.14 Variation of the density profile with the shock Mach number

tM for planar blast waves while ' = 1.4.

Fig. IV.1.15 Variation of the temperature profile with the shock Mach num-

ber t for planar blast waves while Z = 1.4.

Fig. IV.l.16 Variation of the particle velocity profile with the shock Mach

number ri for planar blast waves while t = 1.4.

Fig. IV.h17 Comparison between the pressure profiles for different values

of the specific heat ratio while j : 1 and M = 5.

Fig. IV.l.18 Comparison between the density profiles for different values

of the specific heat ratio while J = 1 and 1 = 5.

r-ig, IV.1.19 Comparison between the temperature profiles for different va-

lues of the specific heat ratio while 3 = 1 and M
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Fig. IV.I.20 Comparison between the particle velocity profiles for diffe-

V rent values of the specific heat ratio while . = 1 and

H = 5.

Fig. IV.l.21 Error in the machine computations as a function of the step

size • in the Runge-Kutta iterative integration in the

case of J 1, I = 2 and % 0.1.

Fig. IV.I.22 Effect of variation of the shock Mach number H on the loca-

tion of the integral curves with respect to the locii of the

singularities F = 1 and Z = (1 - F )2 for' 2 and

1.4.

Fig. IV.1.23 Effect ofP variation of the shock Mach number tl on the loca-

tion of the integral curves with respect to the locii of thu

singularities 1 = I and Z = H - Fj 2 for 1 land

1. 4.

Fig. IV.I.24 Effect of variation of the shock Mach number N on the loca-

tion of the integral curves with respect to the iocii of the
2

singularities F 1 and 7- (1 - F 1 for i 0 and

= 1.4.

Fig. IV.I.25 Location of the singular points F I and 2 (1 - F 2 at

values of X rather than the exact one in the case of i 2 ,
and 1 = 2.

Fig. IV.I.26 The mass integral ( 1 I) as a function of . in the

case of • = 1.4. -

Fig. IV.1.27 Comparison between the present solution with the first urdur,

perturoation solution (SaKurai, 1954) and the bucUnd puL'LLJI'--

bation solution (Bach and Lee, 1969). •

S%
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Fig. IV.l.28 Pressure ratio across the shock front as a function of the

non-dimensional shock radius I for the three cases of sphe-

rical, cylindrical and planar blasts while • = 1.4.

Fig. IV.l.29 Density ratio across the shock front as a function of the

non-dimensional shock radius I for the three cases of sphe-

rical, cylindrical and planar blasts while ? = 1.4.

Fig. IV.l.30 Temperature ratio across the shock front as a function of

the non-dimensional shock radius I for the three cases of

spherical, cylindrical and planar blasts while if = 1.4.

Fig. IV.l.31 Variation of the particle velocity at the shock front as a |

functior of the non-dimensional shock wave radius T for

the three cases of spherical, cylindrical and planar blasts

while • 1.4. -

Fig. IV.l.32 Mach number of spherical, cylindrical and planar blast wave

front as a function of the non-dimensional radius while

1.4.
-I

Fig. IV.I.33 Variation of the shock wave non-dimensional radius I with

the non-dimensional time +,tm/v for spherical, cylindri-

cal and planar blasts with • 1.4.
I

Fig. IV.l.34 Shock decay coefficient ý as a function of • for the three

cases of spherical, cylindrical and planar blasts with
S1. 4.

rig. IV.i.35 Comparison between the solution based on the present crite-

rion with the solution based on the energy intugral criterion

for j 1and • = 1.4.

Fig. IV.I.36 Variation of the velocity at the center with the dauýmUd Value

of the shock aecay coefficient in the case of . - 1 nir

S=2. 2.
k ,,
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IV.2. QUASI-SIMILAR SOLUTIONS OF ADIABATIC POINT EXPLOSIONS--
AN ANALYTICAL SOLUTION*

i) Introduction

In this section, the quasi-similarity is introduced to study the flow field

structure of adiabatic blast waves. The formulation of the problem is made

applicable for the three geometrical symmetries: spherical, cylindrical and

planar waves. The flow field is assumed to be inviscid and the flowing me-

dium is treated as a perfect g's with a mean specific heat ratio • . An ap-

proximate analytical solution is obtained and the results are compared with

other existing solutions. Finally, depending on these results, the vwlidity

of the quasi-similar theory is discussed.

ii) Problem Fol-mulation:

The conservatlon equations Iii their gencral form are given by Eqs. (11.20),

(11,22) anu (11.24). 'For inviscid anri s-ourceless flow field, all 95s in

these equation3 vaniz!,, Moreover, when the flowing medium is treated as a

perfect gas With a mL.11 specific heat ratio, • , and when P is constant,

these equations are sirrpl' reduceJ to

s L fx) f -• o ( IV.2.1)+F
*(

'•his application is ua.•, on OsL.•ma (1964•),
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The governing equations, Eps. (IV.2.1), are subject to the boundary conditions -

"given by the Rankine-Hugoniot relations, Eqs. (11.88) - (11.90), which may be

rewritten as follows

3 - 3 (bl)- 2'-(b'-I) (IV.2.2)

For adiabatic point explosions and sourceless flow fields, the energy integral,

Eq. (11.95), reduces to

+ ,V. 2..3
.._-

Utilizing the concept of quasl-similarity, the governing equations reduce to a

system of ordinary differential ones, given by Eqs. (111.23) - (111.25) in

which all the 's equal to zero for a sourceless f]' field. Therefore, one

may rewrite the governing equations of the quasi-sirilar solutions as follows:

+ +

:% ,I
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where

'21

+I

+°

2 (A - •1) .

and

The adiabatic integral, Eq. (II.33), may be vewritten directly as

In order to use this integral as a checK through the numerical integration,

one may introduce the following new variables

and (IV.2.61

then, the basic equations, Eqs (Iahc), in terms of umarial wintegr tatin
the form
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40 r P--L

fix x k I

I--

where

and

D

V - .or-- )

and the boundary conditi.ons are transformed to

p CIV.2.8)

and

Thua, the pbouerm .;.s tdtnsfomred to a boundary value one in which, tis an un

Known factor -For each value of ,Air• itcrmtiun procedure iLs performed until

the orrect ,A s obtain§:d, wh:;h:h muzt - qfy th:e idabt n raE,
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(IV.2.5), to a sufficient accuracy. The values of determined are prý-6ented

in Table IV.2.1 S

iii) Approximato Relations

It is found from the calculated results that the solution may be represented

approximately in the form

SI = • X + p X (IV.2.9)

tS

where o( , 13 and n are determined by the boundary conditions and the asymp-

totic behaviour of I and K to X = 0. From Eq. (IV.2.7), one has

IX•= ox-0- 0 6
Iw

Lim A' ( 8** X+)

x:• -,. 0i)....

+
Xz o

thus

d,,• t=o+1

while from Eq. (IV.2.9)

1hus

4
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Also, from Eq. (IV.2.9), one has

S= 13-

Thus

if- __ 1+_____ - .JV.9l

while

=( (IV.2.12)

where

In dx K t K
Nt

By using the values of A determined previously, the values of c( ,3 and

fl can be obtained from the above relations. These values as well aa

and I are tabilated in Table IV.2.2.

%r integrating the second of Eqs. (IV.2.7), it follows that

intt-gration oft" he above uquati,.Jn iri .J

--

x +I

FL#r-
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" ~D"
--• •• .ip-'.l jr• w- " d'.

= i~~ xA 01 1) 1.p )~r '1) -A(~nt~

Thus

D nO'a (n - ~ s 1) - -A

=. x
The constant of integration is determined by using the boundary conditions at

1 to yield finally

n /0 -
1r~j+ ýi (,Y-I)- *-ri

X n (IV.2. 13)

From Eqs. (IV.2.4), one has

1."

which yields upon integration

i+L 0 - 0___ ~

Applytra the boundary conditions yields

÷' 1 •- - j
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It follows also from Eqs. (IVW2.4) that

I..

2 orJ

+ ]•

Integration yields

Deteriiining the value of tt,- constant from the boundary conditions yields

.(IV.2.15"

Equattons (IV.2.9), (IV.2.14) and (IV.2.15] are the approximate relations for

deternining the non-dimensional gasdynamnii parameters f , A and e , respec-

tivelv.

In order to determine a relation between A and • , one may differentiate

the relation of Eq. (IV.2.9) twice and eliminate 3 to ubtain et .f.. 1:

'h0 av .M 1

jX ' 17
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With the aid of Eqs. (IV.2.B) and (IV.2.9), one has

+_ I.n K =--

(dl) - 4".j. .d r

K• ci
K,, d nf In K1 n4 r

+ (~A n

+ In

-n rn-

Subslituting the values of ( • ,n and <4 into Eq.

(IV.' .16). a third order algebraic equation in • is obtained. In the case

of p anar waves, this equation is reduced to a second order algebraic equa-

tion and its proper root is given by

wheru
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A41= L 4 Y( :2 +

2I

4" E4 K•_ - ÷ (e+S) Or _ ) TZ-u• + 1 (Y+:i) 0 •

F"-L

13"::) as3~1 +4 2± 63)I(+-)ý 3  Of- 1 1) 0

VI (' - i2 T..I

iv) Results and Conclusions:

The distributions of the gasdynamic parameters a , n ard r are presented

in Figs. IV.2.1 to IV.2.6 to show the applicability of the approximate formu-

lae, given by Eqs. (IV.2.9), (IV.2.l4) and (IV.2.15), which are compared

with numerical and Sakurai's second approximation perturbation solutions.

These are for th2 case of cylindrical waves, Ls an example, with two diffe-

rent values of Mach number, 1 2 and M = 3, while • = 1.4. This compa-

rison proves the usefulness of thesE formulae. Especially, in the neighbor-

hood cf 0 = 0, where the original equations show a singularity at the center
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of symmetry, X 0, these formulae yield good insight into the problem under

:* study.

The pressure and temperature distributions are also shown in Figs. IV.2.7 to

IV.2.14, for the three geometrical symmetries. These figures show that the

pressure is approximately uniform near the center of symmetry while the tem-

perature has a steep increase near the center of symmetry to infinity as a

result of neglecting the heat transfer effects.

Figure IV.2.15 shows the variation of X with 1 for different values of

in the case of planar waves, by using the approximate analytical formula gi-

ven by Eq. (IV.2.17).

It is observed from the experimental data (Oshima, 1960) that the quasi-simi-

larity assumptions fail for the strong blast waves. It is also clear that the

central region in the quasi-similar solution has an infinitely high tempera-

ture core which is never realized in the actual flow. This last phenomena is

due to the fact that transport processes have been neglected in the governing

Eqs. (IV.2.1) and not due to quasi-similarity assumptions. Later in this

chapter we shall deal with this issue.

Therefore, the region in which the quasi-similar solution is applicable is

limited to the flow fields of blast waves with moderate strength excluding the

central region.

Figure IV.2.16 shows a comparison of the values of A obtained by the quasi-

similar technique with that calculated previously by SaKurai (19A4), Sedov

(195/3 and Brode (155, 1959), all for the spherical waves with i = '2.

Sedov (1957) expressed the velocity, pressure and density as functions of

and ý . These variables were expanded in a power series of Y , and I was

assumed tr taKe the form,

then neglecting the higher order teiýnm, the basic equatiuns were ri'ducud to 1

system of linear dafferential LCquations ccntaining the unknown cunstarit P?
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This value of a was de'ermined so that the boundary conditions at X = 1 and

- = 0 were satisfied. It was close to 1.92 in the case of i = 2. Finally,

the results obtained were expressed by
- .-.=

I

1i+ t.92•1

and

3

Brode (1955, 1959) calculated numerically the adiabatic point explosion problem

using artificial viscosity technique, and presented an approximate formula well

in agreement with the calculated results using the quasi-similar technique,

which is given by

,.. " ~(I. •).;

and

Finally, Sakurai (1954) obtained the following results

:z. ClI.3 gig

and A

which is also compatible with previous ones.
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Figure Captions

"Fig. IV.2.1 The distribution of the non-dimensional particle velocity

"F based on the present approximate formulae as compared

with those of numerical ahd SaKurai's second order pertur-

bation sclutions for the case of J= I at tl 3.

Fig. IV.2.2 The distribution of the non-dimensional pressure 9 based

on the present approximate formulae as compared with -4

"those of numerical and SaKurai's second order perturba-

tion solutions for the case of I 1 at ' = 3.

Fig. IV.2.3 The distribution of the non-dimensional density k based

on the oresent approximate formulae as compared with

those of numerical and Sakurai's second order perturba-

tion solutions for the case of 1 1 at I 3.
Kt

Fig. IV.2.4 The distribution of the non-dimensional particle velocity

Sbased on the present approximate formulae as compared

with those of numerical and Sakurai's second order pertur-

bation solutions for the case of I 1 at rl = 2.

Fig. IV.2.5 The distribution of the non-dimensional pressure 9 based

on the present approximate formulae as compared with

those of numerical and Sakurai's second order perturba-

tion solutions for the case of 1 = 1 at t- 2.

Fig. IV.2.6 Th8 distribution of the ron-dimensiornl density k based

on the present approximace formulae as compared tth . I

those of numerical and Sakurai's second order per.urba-

tijn solutions for the casu of I 1 at PI = 2.

Fig. IV.2.7 Pressuru distribution at. d4'•ferant values of the shock

Mach number M for planar waves with 5 = 1.4.

-'
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Fig. IV.2. 8 Pressure diEtribution at ditorent values of the shock

Mach number ri for planar waves with b = 1.667.

Fig. IV.2. 9 Pressure distribution at different values of the shock

Mach number H for cylindrical waves with tr = 1.4.

Fig. IV.2.10 Pressure distribution at different values of the shock

Mach number ' for spherical waves with : 1.4.

Fig. IV.2.11 Temperature distribution at different values of the 4

shock Mach number tl for planar waves with 1.4.

Fig. IV.2.12 Temperature distribution at different values of the

shock Mach number (I for planar waves with • 1.667.

Fig. IV.2.13 Temperature distribution at different values of the

shock Mach number t1 for cylindrical waves with Y = 1.4.

Fig. IV.2.14 Temperature distribution at different values of the

shock Mach number 1 for spherical waves with 7 1.4.

Fig. IV.2.15 Variation of the decay coefficient X with ' in the

case of planar waves while • * 1.2, 1.4 and 1.667.

Fig. IV.2.16 Comparison of the values of 2 based on the present ap-

proximate solution with those of Sakurai's (1954),

Sedov's (1957) and Brode's (1955, 1959) for the spheri-

cal waves.



-126- I

,.I

1.4 =1.667 =1.4

J'=0 .10 Q=i j'=2

1.1 0.8264 0.076 0.078 0.152 0.24

1.2 0.6944 0.150 0.156 0.304 0.474

1.4 0.5102 0.284 0.284 0.568 0.870

1.6 0.3906 0.390 0.410 0.772 1.156

2.0 0.25 0.530 0.550 1.058 1.58

3.0 0.1111 0.74 0.78 1.458 2.16

0 1.0 1.0 2.0 3.0

TABLE IV.2.1 - Values of

I

-I

.

o
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1.1 0.8264 0.9385 -0.0832 7.6490 2.2604 4.254

-12 0.6944 0.8811 -0,1356 5.2478 2.1356 1.738

1.4 0.5102 0.7812 -0.1923 3.2262 1.8690 0.860

1.4 1.6 0.3906 0.7049 -0.2126 2.8645 1.7505 0.505 -

2.0 0.25 0.6074 -0.2323 2.4249 1.5949 0.Z58 a

1.1 0.8264 0.9439 -0.0741 7.9433 1.3229 9.8619

1 16 2 0.6944 0.8913 -0,1205 4.9668 1.1377 3.5336
D 1.4 0.5102 0.8103 -0.1776 3.3412 1.1235 1.422M

1.667 1,6 0,3906 0,7332 -0.1902 3.0941 1.0938 0.768E

2.0 0.25 0.6527 -0.2151 2.5397 1.0346 0.378S

1.1 0.8264 0.9385 -0.0830 5.7470 1.320 2.890

1.2 0.6944 0.8795 -0.1340 3.9918 1.0523 1.9414

1.4 0.5102 0.7814 -0.1894 3.0412 0.9533 1.2716

1.4 1.6 0.3906 0.7080 -0.2157 2.6871 0.9161 0.9556 r A

2.0 0.25 0.6082 -0.2331 2.4921 0.8263 0.6976

1.1 0.8264 0.9353 -0.0798 5.3195 0.7592 2.271

1.2 0.6944 0.8747 -0.1292 3.9520 0.7093 1.745
1.4 0.5102 0.7766 -0.1846 3.0970 0.6469 1.320

1.4 1.6 0.3906 0.7085 -0.2162 2.5550 0.b026 1.121

2.0 0.25 U.6099 -0.2348 2.5021 0.5710 0.883 -

I

STABLE IV,2,2 a Iau e s o f 13 T a n d"

4
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b6

b6

j=1

M4=3

f

0.5

h=1.458 2ad approx.Sakurai 's '

(approx.)

•=1 .46(numerical)

0 0.5 1.0
x I

Fig. IV.2.1

. |
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%%-I

1.01

j=1

g M=3

=1.46

(numerical) •

0.5 .Sakurai 's

2nd approx.

S1.458

0 0.5 1.0
x

Fig. IV.2.2 ..
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4

j=1
M= 3

h

S1,458
(approx.)

2

'Ah= 1.46

(numerical)

Sakurai's
2nd approx.

0 0.5 1.0

Fig. IV.2.3

I'9
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6

I

0 8.

K 0.8 - - "- ,
j=l
M=2

Sakurai's
2nd approx.

pf

0..4

,"~( appr oxima te) '

S1.06
• • ( numelricalI)

04 0.5 6.

Fig, IV. 2.4,-

/

4' N.

7 1.05
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M=2
r=l .4

~=1.0589 (approximate)

0.5,

11.0

(numerical)/

Sakurai's
2nd approx.

0 0.5 1.0
X

Fig. IV.2.5

I

n
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iI

4

j=l
M=2 Sakurai'sM=2. 2nd approx.

h/

2A= 1.0o6,.
(numerical)

-- ?~=1.058
-- (approximate)

0 I ,_ __I_ _ __10

0 0.5 1.0 4
x

Fig. IV.2.6
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4

P/P a M-3. 0
2.0

31 1.6
1.4
1.2

2

1=.1

S!,1=3.0.0

Fig. IV. 2. 7



4 135

4

2..

j=O
X=1. 667

0.5 1.0
x

Fig. IV. 2 .8
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5 I

4

P/Pa --- 3

M=3
2

2

j=l1=1. 4

0 0.5 1.0 - q
x

Fig. IV.2.9'

2-1!
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I.

4 -

m=3.
3 2.0

1.6
1.4

2

j=2

0 0.5 1.0
x

Fig. IV.2.10
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P ~2.5 I

V j=O

v ~T/?a

L ~2.0 A

0 0.5 1.02

Fig. iV.2.11
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7
j=0

T/Ta l=1.667

6

5

4~

t2 "2

3i.2 .

, -

0 0.5 1.0 E
x

Fig. IV.2.12
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2.5

j =1

Y=I. 4

T/T a

2.0

1.56

1.0.4

1 0

0 0.5 1.0
x

Fig. IV.2.13

-2I
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2.51

j=2

T/T

-. :°

2.0.

O'-E

1.5

1.

1.0
0 0.5 1.0

x
Fig. IV.2.14

• I
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p 
0

1 j=D

NAA

" 
=1. 667

0.5-

0 0.5 1.0

Fig IV.2.15

•-g'
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1: Fuasi-similar theory
2. Sakurai's 2nd approx.
3. Sedov's 2nd approx.
4. 1 rode's numerical cal.

2-~ -32 /3

4

2

•,2

0 0.5 1.0

Fig. IV.2.16
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IV.3 BLAST WAVES IN REAL GASES*

L I) Introduction

In the prevailing number of cases, with very few exceptions, despite the high

temperatures involved, the gaseous medium affected by blast waves has been

treated in the literature as a perfect gas with constant specific heats. How-

ever, due to the extremely high temperatures prevailing close to the centers

of blast waves, one should expect the excitation of all possible degrees of -,

freedom of the internal energy of the gas. One, therefore, should take into

account such phenomena as vibrational excitation, dissociation, electronic

exitation and ionization, as well as the influence of compressibility at high

pressures. 0

In this section, the real gas effects in adiabatic point explosions are taken

into account. For this purpose, an equilibrium thermodynamic analysis is car-

ried out in different ranges of pressures and temperatures. At high pressures,

the compressibility effect is considered using empirical formulae, such as the =

Beattie-Bridgeman equation, as well as the concept of residual properties. At

high temperatures, on the other hand, quantum statistical thermodynamic con-

cepts are used to determine the degree of excitation leading to dissociation

and ionization of the gas, As formulated previously in Chapter II, the real -

gas characteristics are expressed in terms of two thermodynamic properties.

These are a non-dimensional speed of aound factor, r , and the dimensionless

internal energy, V . The geometry of the generated field, whether it is a

plane, cylindrical or spherical, is considered. The flow field is assumed to S

be sourceless, inviscid, non-conducting and non-radiating.

ii) Problem Formulation

the general form of the governing equations, including real gas effects, are

given Dy Eqs. (II.20), (11.22) and (11.27). In the absence of all source

terms and when R is constant, these equations become

T

" This application is oassd on Chonier (1l975).,
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-a 14,. +( -+0• •,,: j
'I-

f(IV.3.1'

and

where r is defined by Eq. (11.6) as

F• • )a, (Iv.3.2) ,

Thu boundary conditions of the problem are given by Eqs. (11.54) - (11.56)

which may be rewritten as follows

An

+I9M [IV.3.3)

and

n 9 'i

where o- is defined in Eq. (11.15) as

V -
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S•(IV.3.4)
W~n

The mass and energy integrals, Eqs. (11.65) and (11.73), in this case, are gi-

ven by

iI

= (IV.3.5J

and

LT( 6 s+.L )Ax - .+1Iv.3.6

while the decay coefficient X has the form given by Eq. (11.76) as

iii) Real Gas Analysis

Ae discussed previously, the real gpz behaviour is expressed in terms of two

thermodynamic prc~perties, namely Lhe internal enery' o- and the speed of

sound factor r . Thus, before attempting to solve the governing equdtions,

thuse two quantities must be related to other thermodynamic variables in such

a manner as to take into account the effects of compressibility and high tem-

perature. To this end. the thermal equation of state may be expressed in the

;orm of a perfect gas law that incorporates a compressibility deviation fac-

tor, V , as well as a high temperature deviation fac'or, H . Hence, onec r
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may write an equation of state in the form

CIV.3.8)

CI

where

%A1.B.Rr- ( Iv.3.9)

with R being the gas constant.

One may then think of determining appropriate forms for the deviation factors
ZC and r"

The compressibility deviation in the thermal equation of a perfect gas is of-

ten taken into ,3,isideration by means of semi-empirical relations. The other

properties, like internal energy and specifIc heats, are then calculted using -

the concept of residual properties (Saad, 196VI. These are the deviations in

the real gas properties from those of the perfect gas due to the effect of

specific volume or pressure on specific heats. Fur example, the internal

energy may be expressed as e =+e,.where e is the internal energy of the 4V

perfect gas and it is a function of temperature only, d is the residual .'n-

ternal energy and it is a function of both temperature and specific volume, it

is given by Rozhdestrenskii (1961) as

V
V .e' f (T 7" ) - {IV.3.10)

•-°4

where V is the specific volume. However, the thermal equatiun of •tate can

be put in the form

PT j0 ) C~ +E ) (I\/.3.11)
IT•

(v I
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where the functions and can be chosen to satisfy equations such as the

Van der Waals' equation or the Beattie-Bridgeman equation and C is a constant.

The above equation is found to fit the experimental data of many gases to

within 0.5% accuracy over a wide range of pressures and temperatures.

The residual internal energy may now be calculated by differentiating Eq. (IV.

"3.11) with respect to temperature and then carrying out the integration in Eq.

(IV.3.10). This yields

3Cv P (IV.3.12)

The residual specific heat V , difference in specific heats, Cp - C,, and

r may be obtained using similar relations as Eq. (IV.3.10), given by Saad

(1969). With a similar procedure, one obtains the following expressions:

d- (IV.3.13)

CP-CV - YNS (IV.3.14)

Vr3 vr3

and

~~+ t,"-"v -- ' IV.3.15)
P VT3 V27- 3  L

where primes indicate cfiff:rentiation with respect to V

For the Beattie-Bridgeman equation, which is considered here, the expressions

fcrf and P and their derivatives and integrations are
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V V

(IV.3.16)

and

v - _ -'

"where F L. , 8, , b and C are constants which may be determined experi-

mentally for each gas.

To define the caloric equation C it a e 4 +. ) completely, an expression for
4

the perfect gas internal energy Lo should be given. De Broglie suggested

that particles on the atomic scale behave in a wave-like manner, i.e. associa-

ted with each particle there is a wave with a certain frequency. The Schroe-

• dinger equation, using the above postulate, describes the motion of the parti-

* cle in terms of its Kinetic energy E and its potential energy Le as

follows:

Pot

where ~'3 and in are the displacement dnd the mass of the particle, respective-

ly, while .~is Planck's constant, and

Since the internal energy cf the perfect gas molecule may be considered to be

associated with translational, rotational and vibrational motion, in addition

to that resulting from electronic excitation, the Schroedinger equation, Eq.
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(IV.3.17)1 may be solved for each mode of motion independently to obtain the

various available energy levels. These are given as

S71 4 7

Aj- r, 2L ..n:"

,,~~RT 1f't = • •g ) (IV.3.181 ,).

"and

where tj., .• .1 and #1 are the corresponding quantum numbers, I is

the moment of inertia of the dumbell-shaped molecule and -) is the frequency .

of vibration of the harmonic oscillator- However, for a system of N partic-

• . les, each single molecule can exist in any one of these energy levels, i.e.

there is a certain distribution of molecules among available energy levels.

This distribution is governed by the thermodynamic probability factor V/ . Ac-

cording to the Boltzmann distribution function (Saad, 1969), the distribution

of particles in the most probable case, which is defined by 0V/ 0, is given
by -

S= ~ ~(Iv.3.19) .":

where • is the partition function and is defined as

(IV.3.20) - I

is the degeneracy (multiplicity) of energy levels with the same value of

energy

and p _ with 4 being the Boltzmann constant.

q
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•.The internal energy for N molecules is ev= ar N; (- and since Nj is given

by Eq. (IV,3.19), the caloric equation is put in the form sic .i

Al C-,, e I 4*T (IV.3.21)

IT

which is evident since A "-2

The value of the partition function may be evaluated using Eqs. (IV.3.18) and

(IV.3.20), after the summation sign is approximated by an integration sign,

since the separation between successive energy levels is small (Lee et al.,

1963). The integration yields:

-2 .__ _6•_ ,,'r

{• 3 e +5 e T.... r O

'ot = (IV.3.22)

~~ > ar.>

and

ve' T ,
, rf-V/T

where r is the characteristic temperature of rotation

9 V r

~ -A 2

~7r 2
IA

I
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-r is the characteristic temperature of vibration

V.V

Now, according to the type of the molecules, the partition function and the

internal energy of the perfect gas may be evqluated.

For a monatomic gas, the molecules have only translational motion, accordingly

2 -\- .631•r ".1-

2. T. 7-

(IV.3.23)

qnd -

,,e . n - 2 Al -

On the other hand, for a diatomic gas, the molecules have translational, rota-

tional and vibrational motion. From Eqs. (IV.3.20) and (IV.3.21) one obtains

e ~

(IV.3.24)

and

It is to be noted that Eq. (IV.3.24) is valid for T> Or , which is the case

of most gases at 7 > 100K.

• • m • •
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The deviation factor 7 is thus obtained from Eq. (IV.3.11) and Eqs. (IV.5.lb)
C

in the following form

where

(IV.3.25)

b PCJt

and

C -C

The high temperature deviation factor, r • includes, of course, the effects

of both dissociation and ionization of gases.

During the process of dissociation, the composition of a diatomic gas AS is

given by

+ (IV.3.'26

where cu j is the degree of dissociation. It is defined as the ratio of the

number of dissociated r lecules to the initial number of molecules A Z. The

total number of molecules at any instant is given from Eq. (IV.3.26) us

(I•'0"/.) per molecule of A. Cbnsidering each constituent as d perfuct

gas, the thermal equation of the dissociating gas may be written in the form
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P = (I - %) J R2 T (IV.3.27) -

where R. is the gas constant of A. - -

To predict the equilibrium composition of the gas, or the value of Xj as a

function of pressure and temperature, the law of mass action, Van't Hoff's

"equation, is applied. In its classical form it is given as

(IV.3.28)

where Kp is the equilibrium constant, and is the heat of reaction at con-

stant pressure. These are given by

_( = zLCL)L..)p _ (V 'i and Kp 'P

where z) is the number of molecules and is the enthalpy. Subscripts P

and r denote products and reactants, respectively.

The partial pressure of each constituent in Eq. (IV.3.26) is given as

and
(IV.3.29)

Then the equilibrium constant may be calculated from Eqs. (1V.3.26) and

S. o •
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(IV..3.29) as

K -(IV.3.30)

4~ ,g

When the condition of statistical equilibrium is applied to a reacting system, .-

the statistical form of the law of mass action is obtained in the form e

-eKp = eXp (N 7rE ) (IV.3.31)

where eVC is the change in the ground state energy during the reaction.

Equations (IV.3.23) and (IV.3.24) represent the partition functions of the re-

actant and the product of dissociation, respectively. Hence, substituting in

Eq. (IV.3.31), one obtains the equilibrium constant in the form (Grossman,

1969),

31/2,1 3/2 L--v

(IV.3.32)

where e is the dissociation energy.

The caloric equation of a dissociating gas is given as

e (- J) eA +- O eR + &_ d ed (IV.3.33)

Differentiating the above equation with respect to 'T , one obtains the speci-
ffic heat at constant volume, C , as

I
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The value of (- is obtained by differentiating Eq. (IV.3.30) with re-

spect to temperature and using Eq. (IV.3.271 to substitute for P . After

some algebraic manipulations, one obt•ins

-- T oId (IV.3.35)

-T ( 1 Tv 1)

where

v.- Using the same procedure, the specific heat at constant pressure, Cp , is ob-

"tained as

*2cjCp (2 1 L + e)( )

with (IV.3.36)

Finally, the isentropic compressibility, or the speed of sound factor, r . is

obtained by differentijting Eq. (IV.3.27) with respect to J2 and substituting

in Eq. (IV.3.2). It is found to equal

p Cp 2. 6

-cP (IV.3.37)C 2i
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Thus, Eq. (IV.3.30) and (IV.3.31) define the value of Cd and Eqs. (IV.3.34), -

(IV.3.36) and (IV.3.37) determine the value of r

Ionization is treated very similar to dissociation from the point of view of

thermodynamics. The composition of the ionized gas 4 at any temperature is

given by

(__YI + of; e"(IV.3.38)

where c[ is the degree of ionization (subscript L = 1,2 for the first and

second ionizations, respectively) and e denotes a free electron. It is de--

fined as the ratio of the number of ionized atoms A÷ to the original number

of atoms 7 , The thermal equation can be written in the form

P =(tP-7- • (IV.3.39) "•

where R is the gas constant of A • 4Z."

The equilibrium constant of ionization is determined by substituting from Eq.

(IV.3.23) for Z into Eq. (IV.3.31), realizing that all plasma constituents,

in this case, can be treated as monatomic gases. Thus, one obtains

K•= • I r~r• •)e 7- 5/ e, • ~ ) (IV.3.40) .

where e. is the ionization energy

me is the electronic mass

•¢ is the electronic partition function of free electrons = 2

. and Ze are the partition functions of electronic excitation of

4 and • respectively.
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The partial pressure of each constituent is evaluated in terms of O•j using

.q. (IV.3.38). as previously done for dissociation. Substituting in Eq.

(IV.3.283, one obtains

K ..... (IV.3.41)

P, ,

Equations (IV.3.401 and (IV.3.41 give the equilibrium composition of the

ionized gas in terms of its pressure and temperature. The resulting equation

is the Saha Equation (Benson, 1967).

The internal energy of the ionized gas is given by

C = (-4() e, -t j' e . + d - . + e

and, since all constituents are treated as monatomic gases

'._-(i ),. RT + +; e (IV.3.42)

The value of CV , P and r are obtained in a similar manner as in dissocia-

tion, thus one getb
$

CV= I , (I+o,.> ÷(.1T+ e+. )+ X,

and (IV.3.43)

where

0
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L0Tm-= , c"j(I,''-o (~ . ,..-.

and (IV. 3.44)
Y

-v4,, "'e-' 6T + :'

with

while

r- Cp (IV.3.45
CV

Thl e of multiple ionization is obtained directly by modifying the .,t of

nquations of single ionization. For example, the Saha Equation may be exten-
th"-

dtd (Camble, 1963) for the n electron to yield

J-•'~ ~ _z • • ,•e., 7" ex#HIv.a ,:

inmilarly, Eqs. (IV.3.421 - (IV.3.45) may also be extended by substituting .

to replace . .

Since the electron motion around the nucleus is very complicated, the Schrce-

S.
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dinger equation is not solved to obtain electronic energy levels. However,

since the separation between successive energy levels is high, Z may be

expanded in the form

16

where both the degeneracies •. and the energies e,. are determined experimen-

tally from spectroscopic data (Rozhdestvunskii et al., 1961).

To determine the electrqnic internal energy and specific heat, Eq. (IV.3.47)

is differentiated twice. It yields

'I 6",
He

and (IV.3.48)

where primes denote differentiation with respect to 7

Svbstituting from Eq. (IV.3.48) in Eq. (IV.3.21), the internal energy it ob-

tained. However, by differentiating Eq. (IV.3.21). C is obtained in terms

of • and • ir the form

Ze C

C Z-eR T A (IV.3.49)

The main difficulty in obtaining solutions with the series expressed in Eq.

(IV.3.47) is that it is not a finite sum. The terms approach infinity as the
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energy level •, approaches a constant value, namely the ionization energy.

However, a two-term approximation is used here to evaluate the thermodynamic

properties.

The temperature deviation factor, . , is then obtained from Eq. (IV.3.27)

and (IV.3.39) for a double ionized gas as

i + aj i ce) (IV.3.50)

where

i -i

The non-dimensional equilibrium constant Ip is obtained from Eqs. (IV.3.32)
, -4

and (IV.3.46), after substituting for the dimensionless variables. They are

given as

P -- P.. rp-,) exp(~GY
4 Ploss 9 'A

and

*P aP' C eq f

e.here

and • • •
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I ~ LZ

Ii 'Pa..

The pressure j is in atm. and the temperature 7 is in 'K.

The total internal energy of a gas may be exoressed as the summation of the

contribution of various effects, i.e.

that is a sum of the ideal gas internal energy and those due to compressibi-

lity, dissociation, ionization and electronic excitation, respectively.

Therefore, the internal energy may take the following non-dimensional form

+ .1 ~ +(-~e ce(i, q + 0e,

(IV.3.51)

where c-• 's are obtained from Eqs. (IV.3.10), (IV.3.23). (IV.3.24), M1V.3.33)

and (IV.'3.42) as
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6' =

and (IV. 3.52)
1 = I.5 + v o•+-

a.

[,,,,pce_,.. ) - I

where

"0S

and 61

while both and Ze are given in Eqs. (IV.3.47) and (IV.3.48).

* ~The non-dimensional speed of sound factbr r' which is defined in Eq. (IV.3.2),

can be put in the form

W- -- IV 3.3

T'.

The value of nais given by CP /C tb , which are obtained fron Eqs. (IV.3.34),
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(IV.3.36) and (IV.3.43). The composition of the gas A is given at any in-

stant by Eqs. (IV.3.26) and (IV.3.38) in the following form

,•aq 0( e-- +) ae [( 'eI-•)

+ 14 +" + (IV.3.54)

For such a gas, iV is given by

+T oi s ei +et Cj- + _ie)) + A -zed hle

+ ~ (IV.3.55)

The electronic specific heats C are given in Eq. (IV.3.49), while
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are expressed in Eqs. (IV.3.35) and (IV.3.44).

Since various energy modes are excited subsequently, their contribution on

C 4-- )r may be expressed as

•"•(IV.3.56)

S.-

where M • d , 1 and 2.

The term p may be obtained with the aid of Eqs. (IV.3.9) and

(IV.3.25) which yields

I,?
&P= -

iv) Solution

a) The Self-Similar Solution

Since self-similarity reduces appreciably the mathcmatical complications of

the solution, it has always been the first step in seeking a solution for

blast wave problems. The utilized equation of state of the flowing gas should -'

also satisfy the conditions of self-similarity, i.e. it should not contain any

dimensional constant whose dimensions are dependent on pressure. As previ-

ously suggested by KorobeiniKov et.al. (1961) and Sedov (l'S5'), its general form

is

C p U(V) CIV..3.5.)

-4'.
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where q6 is a function of density only. The corresponding thermal equation

may be derived as follows: from the first law of thermodynamics

Trhs = c je +ov

thus

and since $ ' S(P.P.) then

-" •P P +" (: -SP

Comparing the above two expressions and using Eq. (XV.3.57) to express the
differentials of the internal energy in terms of and some thermodynamic :

identities (Thompson, 1972), one obtains .:

and (IV.3.59)

where

The above two equations are transformed into two ordinary differential equa-

tions in an isentropic process. The above two isentropic relations of the
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gas obeying Eq. (IV.3.58) are obtained by integrating them as 6

"and (IV.3.60)

Since one can put C, = ?(C5) , the general thermal equation for a gas obey-

ing the self-similarity restrictions is obtained as

7-~~a (I..-

"- A special, but important, form of Eq. (IV.3.61) may be obtained if y' is ex-

pressed as a linear function of its argjments, yielding

Tr= 8 P (I) (IV.3.62)

where 8 is a constant. g

The Clausius equation of state is suggested to represent the -as behavior at

high pressures and temperatures (Thompson, 1972), since it takes into account

the effect of the volume occupied by the molecules. As it satisfies the self-

similar conditions, it may be used bere. This equation may be wrftten in the - I

form

R -r~ L ) IV.3.53)

I
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where 3 is a constant.

For fluids described by Eq. (IV.3.63), one has e _-(1-) only, just as the

ideal gas, and that C j - Thus

LP .P (IV.3.64)

with • being a mean value for the specific heat ratio. -4

Comparing Eqs. (IV.3.63) and (IV.3.64) with Eq. (IV.3.58), the function 4 is

found to be

d . -_ _- _ ( I V .3 .6 5"

where

The non-dimensional speed of sound factor, r , is found by substituting in

Eq. (IV.3.2) from Eq. (IV.3.58) and knowing that

()P

then

wrich e n th t P -to , u(IV.3.66)

which means that/~' is a Function of density only.
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Substituting from Eq. (IV.3.65) into Eq. (IV.3.66), one gets

(IV.3.67)

which reduces to r_- ' for a perfect gas ( P = 0).

The governing equations, Eqs. (IV.3.1), in the case of strong explosion condi- "

tion, 9 0, are reduced to ..

I .o

and (IV.3.68) -

i cr_(f•)- ,1 F' .C. .i.) •- P, o :..:

The decay coefficient, Eq. (IV.3.7). will take the simple form

0

#= d4 L tIV.3.69)

Equations (IV.3.68) may be rewritten in their autonomous form as

d x A (¢- ()t-p• )

(F--o')
J.

h- OP

P* A•i• 
r •"'

g +
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and "

The boundary conditions of the self-similar flow are deduced directly from

Eqs. (IV. 3 . 3 ),when applying the condition of Y = 0 and consequently 6,, O,

one obtains

f =

(IV.3.71)

and

- The value of n, is evaluated from the last of Eqs. (IV.3.71) when 0n is sub-

stituted by 9 q , then after some algebraic manipulations, one gets

and (IV.3.72)
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Since the boundary conditions depend on p, they depend on the initial con- .

ditions represented by . and hence, the whole solution is expected to de-hL

pend on the initial conditions. However, it should be noted here that the

value of P*for most gases (Saad, 1969) is in the order of 0.002 at the

standard atmospheric conditions. Thus, its effect on the deviation of the .

gas, and consequently on the whole solucion, is expected to be negligible. On

the other hand, for moderate values of initial density J , the problem is

greatly affected by the deviation factor since it Jncreases with P .

The governing equations for the self-similar solution, Eqs. (IV.3.70) which

are subject to the boundary conditions, Eqs. (IV.3.72), are then integrated

numerically.
-m .5

b) The Quasi-Self-Similar Solution

Once the self-similar solution is established, one can then proceed to obtain

the non-self-similar solution. Before attempting to solve the governing equa-

tions, Eqs. (IV.3.1), in order to obta.- the flow field structure, the jump 9,
conditions across the shock have to be determined. The Rankine-Hugoniot equa-

tion is found by substituting for r from Eq. (IV.3.51) into the last of Eqs.

(IV.3.3) as

+ • CIV.3.73)"

The solution procedure may be outlined as follows

a) A trial value of k# is assumed. The corresponding value of the per-

fect gas, Eq. (11.89), at the same front Mach number may be used.

b) The value of Sn is calculated from Eq. (IV.3.3) as

a~ as

where may be taken as * since the undisturbed medium is considered aC

CL9
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i "
a perfect gas.

c) Equation (IV.3.8), the thermal equation, is solved numerically with

the aid of Eqs. (IV.3.25) and (IV.3.50), for the temperature e. . The false

position method is used to minimize the number of trials needed to satisfy

Eq. (IV.3.8).

d) The values of 9n , h, and e, are substituted back in the Rankine-

Hugoniot equation, Eq. (IV.3.73). If it is satisfied tu a certain permissible

error • , the assumed value of hj is taken as the correct one. If not, an-

other trial value is assumed in the direction which reduces the error and the

whole precedure is repeated. Here, also, the false position method may be

used to speed up the convergence of the solution.

This method is straight-forward and it gives for any values of e. and (- the - -

properties behind the shock wave up to any desired degree of accuracy. In ge-

neral, t~e equations are convergent and the number of trials do not exceed 5.

Obtaining the boundary conditions, one may then numerically calculate the de-

rivatives of the gasdynamic variables with respect to , which are equal to

their values at the front as stated by the quasi-similar technique. The New-

ton finite difference for differentiation is used with six points of M around

the value of H at which the field is calculated.

The computational procedure may be put in a step-wise manner as follows:

a) For a specified shock Mach number and initial condition, the boundary

conditions and their derivatives are calculated numerically.

b) A trial value of A is assumed and the integratiun of Eqs. (IV.3.1) is

carried out numerically with a constant step size A 0.01. The temperature

e is calculated at every step in the integration using a subroutine which

applies the false position method to sclve Eq. (IV.3.8) for any values of

and h

c) The integration is stopped when either of thr lrtgLl•fritiLý = or

is encountered. According j thr typu ,f bingularity, 2. ib

decreased or increased.

d) When the value of is sufficient to cLiry •L t' If,;.Lt1of to a
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point near the center of symmetry, X , 0.03, the velocity profile is extra-
polated to check the value of f at the center, C , i.e. f(o,•) • The

correct solution is obtained when f(oY) = 0, Eq. (11.112); however, if <

where • is a small error, the corresponding value of 1 is accepted. If

>• the integration is repeated for values of A around this value and a

curve between 2 and 0 is drawn, the correct value of 2 is that correspon- .i '

ding to F = 0 on the curve.
0

It is to be noted that the quasi-similarity approximation does not conserve

global mass, see Sec. (IV.l), i.e. the density profiles calculated using this

method do not satisfy the mass integral, Eq. (IV.3.5). On the other hand, the

velocity profiles at moderate Mach numbers are not accurate around the center

of symmetry since in this region the particle velocity should be negative as

the particles at the stage of expansion return back to their original position.

However, the degree of accuracy is sufficient for a good qualitative compari-

son between solution for perfect gases and real gases using the same meLhod.

v) Results and Conclusions

Since blast waves are high temperature phenomena, real gas effects at high tem-

peratures, including vibrational excitation, molecular dissociation, electronic

excitation and ionization, are analyzed to determine the thermodynamic proper-

ties of gases under these conditions. The condition of statistical equilibrium

between various species in a chemical reaction is used to evaluate the equilP'-

brium degree of excitation of the reaction processes and then, the thermodyna-

mic properties are calculated considering the gas to be a mixture of perfect

gases. The analysis of thermodynamic properties for real gases is suitable for

any monatomic or diatomic gas, or mixture of such gases as in the case of air.

However, in order to simplify the computations, the data of nitrogen are used

in this application.

The effect of the potential energies of the molecules, which may be divided in-

to the vibrational en~ergy, energy of dissociation and energy of ionization, on

the internal energy of the gas are represented in Fig. IV.3.1. The effect of

the reacting properties on the deviation factor • , on the other hand, is gi-

ven in Fig. IV.3.2 as a function of pressure and temperature. The first stage

0



represents the increase in the number of particles due to oissociation, thus

"indicating the degree of dlssoclatlon, Similarly, the second stage shows

twic, the d-gree of ionization, since each diatomic molecule splits into two

mcnatomic ones. The maximum values of C. and the corresponding minimum va-

lues of r , Figs. IV.3.3 and IV.3.4, occur as a result of the rapid increase

in the internal energy at the beginning of dissociation and every successive

ionization.

From the physical point of view, the function of density, t , in the self- -_

siq.lar solution should be selected to satisfy one of the well-known equa-

tionc. of state suitable to be applied in the range of conditions of self-

similar flow. Thus, the Clausius equation of state :Ls used to represent the

non-perfect gas deviation due to compressibil±ty at high pressures, in terms

of 90 which depends on & . However, since both 0 and the boundary con-

ditions depend on , contrary to the case of perfect gases, the whole so-

lution should be carried out for sprcified values of - . The rusults re-

presentea in Figs. IV.3.5 - IV.3.8 are obtained for \.alues of • 0.01 ,.-

0.016 and 0.032. These values are corresponding to high values if J7, at

which thL compressibility effect dus to high pressures overcomes the effect

of high temperatures that reduces such effect. Of course, at these high tem-

peraturus, thc affect of compressibility is neglected at normal densities.

The results are calculated for J 2 and 2( = 1.4.

Due to the complicated form of the equation of state in the case of rea, -

ses, the variati-n of the gasdynamic properties acro.s the ý,hock wave, wl..h

represent the boundary conditiors of the probiem, are evaluated numerically

by solvirg Tne Rankine-Hugoitot equ, ion with the caloric equation of 3tdte

using the false posi ion met.)od to solve a ssLem Of algebraic equations.

The density ratio hA increases with the excitation of successive energy mu-

des, Fig. IV.3.U. From Zq. (IV.3.3) for strong shock waves, 6-n
Thu•, as en increates due to the effect of tre potential enurgy, An ileo

increaes,. Cn the other hand, the perfect &gs density ratio for strong shocK

wave!, which i, givwn by h E - . may help in expjaining the sequence

of tventts af Fig. iV.3.9. Since %Lrreases due to viorational excitation

and reaches a frLnimurn at the beginiiing of dissociatiL , An increaoes to reach
+r
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a maximum at the same point. Also, the decrease of n with Mach number during ,

ionization is related to the increase in • since at this region CV increa-

ses due to the increase in the number of particles which overcomes the effect

of the potential energy (Zel'dovich et al., 1966).

The temperature ratios decrease with respect to those of perfect gases due to 0

the expenditure of energy as potential energy, as well as the increase in the

number of particles. The high values of potential energy as compared to the

translational energy and the increase in C, decrease the rate at which the "

temperature ratio increases with Mach number as detected from Fig. IV.3.10.

Figure IV.3.11 shows that the pressure ratio is not affected appreciably by

the real gas properties. This can be qualitatively seen from Eqs. (IV.3.3)

which indicate that the pressure ratio varies as V1 , which is not affected

by the real gas properties inside the blast wave. However, since increases

for real gases, the pressure ratio also increases.

Actually, the density ratio curve has a number of maxima which occur at the be-

ginning uf the successive ionizations like that occurring at the beginning of

dissociation. After the occurrence of total ionization the gas transforms into

a mixture of monatomic particles which have a constant value of I = 1.667.

Thus, Ln asymptotically approaches the value of four.

The effect of initial pressure on density ratio and temperature ratio across

the shock wave is shown in Figs. IV.3.12 and IV.3.13o respectively. At a cer-

tain Mach number, as the embient pressure increases, the temperature ratio in-

creases while the density ratio decreases.

The -flow fields generated by blast waves at various values of front Mach numbers

are evaluated by integrating the system of equations, Eqs. (IV.3.1), with r
expressed by Eq. (IV.3.53). Using the quasi-similarity approximation, the deri-

vatives, with respect to • , are substituted for by their corresponding values 41

dt the front. The integration is carried out numerically using the Runge-Kutta

fourth order method with a step size AX = 0.01. The computations are performed

for the spherical wave only, j 2.

The decay coefficient 2 , which is calculated using an iterative procedure to

satisfy thE compatability condition it the center of synrditry, decreases with
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the excitation of the successive energy modes, Fig. IV.3.14. Althcugh this de-

crease seems to be slight, its effect is rather important since the field is

very sensitive to the value of \ ard any change in its third decimal value af-

fects the field appreciably. This weak dependence of the decay coefficient on

the field was previously observed by Kamel (1973b). However, the slight de-

crease in value of A may be due to the expenditure of energy in the excitation

processas which can be represented as an energy sink. lhe deviation in A from

its corresponding value of the perfect gas decreases, approaching zero at

2.5 where temperature inside the field is noc sufficiently high to excite

any additional energy modes.

It is logical that temperature distributions inside the field are greatly affec-

ted by real gas behaviour since a great amount of the blast energy is used as a --

potential energy, beside the translational energy. It is to be noted that when

comparing the temperature distribution of the perfect gas field with that of

the real gas, other effects beside the energy of excitation should be taken into

consideration. For example, when the vibrational motion of the molecules are

excited, an amount of energy is expended which would decrease the temperature.

But, on the other hand, the excitation of vibrational motion of the atoms reld-

tive to each other increases the volume occupied by the molecules and, conse-

quently, increases the temperature. The predominant factor of these two effects

depends on the degree of excitation of the vibrational motion. The resultant

effect may be observed in the field of 1 = 3 and 5 in Figs. IV.3.lS and IV.3.16.

Figure IV.3.17 shows a comparisor between the temperaturq profiles for the per-

fect gas, with different J , and for the real gas, while Fig. IV.3.18 shows the

effect of initial pressure on the temperature profiles.

However, in the process of dissociation and ionization, the heat of reaction is

very high and, thus, the decrease in temperature is always appreciable and the

portions of lower gradients in the temperature curves, Figs. IV.3.15 through 4

IV.3.18 represent the successive reacting processes.

The density profiles, Figs. IV.3.19 through IV.3.22, are relatLd directly to thu

temperature profiles. Tnase figures indicate that the density increases behind

the shcc.\ front and in the vicinity of the center of symmetry.
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In contrast to the large deviations in temperature and density profiles from

* those for perfect gases, the pressure and particle velocity profiles are found

to be less sensitive, Figs. IV.3.23 through IV.3.25. This is a direct conse-

quence of the fact that both pressure and particle velocity are related to the ,

particle translational energy. Although the direct proportionality between

the particle translational energy and the temperature would suggest that the

former should decrease sharply, according to the behaviour of the latter given

by Figs. IV.3.15 through IV.3.18, the large increase in i.ie number of partic-

les due to dissociation and ionization, tend to offset this effect, hence the

insensitivity depicted in Figs. IV.3.23 through IV.3.25.

Finally, the changes in r and C. within the flow field are illustrated in

Figs. IV.3.26 through IV.3.29, where their behaviour, as in the case of tempe-

rature, manifests the different modes of excitation within the blast wave struc-

ture.

p--
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Figure Captions

Fig. IV.3.1 Real gas effect on internal energy at different values of the

ambient pressure for j 2.

Fig. IV.3.2 Real gas deviation factor Z as a function of temperature at

different values of the ambient pressure for S = 2.

Fig. IV.3.3 Effect of vibrational exitation, dissociation and ionization on

r at different values of the ambient pressure for S = 2.

" Fig. IV.3.4 Effect of dissociation and ionization on C, at different va-

lues of the ambient pressure for S = 2.

Fig. IV.3.5 Self-similar density profiles at different values of the para-

meter ) with • = 1.4 while 1 2.

Fig. IV.3.6 Self-similar pressure profiles at different values of the para-

meter with • 1.4 while 1 2.

Fig. IV.3.7 Self-similar velocity profiles at different values of the para-

meter p•with b' 1.4 while 6 = 2.

Fig. IV.3.8 Self-similar temperature profiles at different values of the

parameter tp with " 1.4 while 4 2.

SFig. IV.3.9 Real gas effects on density ratio across a shock wave.

Fig. IV.3.10 Real gas effects on temperature ratio across a shock wave.

Fig. IV.3.11 Comparison between real and perfect gas pressure ratios across

a shock wave.

Fig. IV.3.12 Effect of initial pressure on the density ratio across a shock

wave.
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Fig. IV.3.13 Effect of initial pressure on the temperature ratio across a

shock wave.

Fig. IV.3.14 Real and perfect gas decay coefficients as a function of 1 for

=2.

Fig. IV.3.15 Temperature distribution for various excitation of internal

energy modes at t-1 3 for = 2.

Fig. IV.3.16 Temperature distribution for various excitation of internal

energy modes at I = 5 for = 2.

Fig. IV.3.17 Comparison between the temperature profilas for the perfect gas,

with different values of • and for the real gas at M = 7 for

2.

Fig. IV.3.18 Initial pressure effect on temperature distribution at M 10

for J ,2.

lAg. IV.3.19 Real gas effect on density profiles at ti 3 for i = 2. --

Fig. IV.3.20 Density profiles for various excitation modes at 1 5 for

j=2.

Fig. IV.3.21 Comparison between the density profiles for the perfect gas,

with different values of 1. and for the real gas at 7 =7

for = 2.

fig. IV.3,22 Initial pressure effect on densir, profiles at M = 10 for

2.

Fig. IV.3.23 Velocity and pressure distributions for both perfect and real

gases in a spherical blast wave at Si 5.
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Fig. IV.3.24 Real gas effect on velocity and pressure distributions as com-

pared with those of perfect gas with different values of 5 at

t 7 for a spherical wave.

Fig. IV.3.25 Comparison between the velocity and pressure profiles for the

perfect gas and for the real gas, with different initial pres-

sures, at rl 10 for i = 2.

"I.2.

Fig. IV.3.27 Distribution of r for various excitation modes at 5 = a for

2.-=2. , @

Fig. IV.3.28 Distribution of C V with successive excitation at tI = 3 for

a = 2.

Fig. IV.3.29 Distribution of C with successive excitation at i = 5 for

4°2.

. @

-5
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IV.4. BLAST WAVES IN A DETONATING MEDIUM*

i3 Introduction

in this section, a study oF the gasdnamic aspeots accompanying the propagation 4
of a detonation wave in a uniform ý.ombustible medium is presented.

According to tha Chapmath-Jouguet theory (Oppenhe:.m, 1966], a detonation waVe, ..

once formed, ,411 propagate at a constant velocity independent of the details I

of its initiation processes, and dependent only cn the properties of the explo-

Diva medium in tthi front of tha wave,

The simplest model to use as a basis for an initiation theory would be the in-

stantaneous formatio,, of a reactive blast wave front. a..

Since methane Is the major constituent of natural gas, the most predominantly
used explosive gas mixture, the detonating medium in thia application is as-
sumed to be a stoichiometric methane-air mixture. The detonation medium itself -

i1 taken as a perfect gas with a mean specific noat ratio, 5 that is capaole
of producing tn amount of exothormic energy, 9 per unit mass of the mixture.

-The solution obtainsd here is for the non-self-similar flow fields that result
from inatantannous deposition of energy at a point, along a line or at a plane
in an inviscid medium. It traces *.he drcay of the detonation front from its

initial self-similar limit, corroaponaing to the adiabatic point explosion to

Its uhapmart-Jouguet condition.

*ji)' Problem Formulation

Th bcý equations governing tIhe pcblem can be specified directly from Eqs.
~ii.23), tT1.22) and (11.24) by cquatii'g ali P Is as well as Is to zelo, "+I
sln*ii we -ave a ecurculese f rluw ljd end c3 uniform ambient medium. These

- equat~nz are

*This appliia'ton !- mazed cn A del-Rartuf IJC62),

.,
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2W-top I + ai

I.'

and (IV.4.1)

N
I:

The boundary conditions of the problam are given by the Hugonlot relationi,

Eqs. U1.93), (11.54) and (II.85), which may be rewritten as

S- (IIV.4.2)

I-F,

aind

The shocK strength at the Cnapman-Jouguet condition of overdriven aetonation

is giver by Eq. (11.94) as

The mass ana energy, integrals for the present problem, Eqs (I,6J Mr. Ii!

respecttvely, ae' given by

Cfa f h x½* ,-.___,;.••
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and

f X

JL + (IV.4.5)-'a-+ 0 W- 1

The mass integral, Eq. (IV.4.4), i used here as a check on the density pro-

files, while the energy integral, Eq. (IV.4.5), is used for determining the

norm-im~nsiona1 radius,

lntý decay coefficient, 2 , takes its form given by Eq. (11.97)

wht-1cn for tho strong self-similar olast wave C • = 0), reduces to LNi. 4 ?1

SFir,ý'Lvy t1.n compatability condoitcn wr icr. -i.,urt be natifid at go he center, 0'1,y~ ~ ~ ~ ~~" ýh.4:rec .ouic sg1 by Eq. ýT!_112), namely

i-'ply; ýkr,'b the .C ol'fee; t C ol ti cn .;n rh o.r•.ntq ýtl f,'

r;C Q ' efo/ ) :,". o~ 1 P20.1".4al
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by Eqs. (I1I.23) - (111.25), when all 's vanish

(f.. ).dL ... £ 41gO IV.4.9)

and

where

and

' +•

with

Equations (IV.4.9) thus yield
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+ X).

4.& -• (IV. 4. lO)

J x X2) ex

and

As discussed previously in Chapter III, there are two different singularities,

in addition to the singularity at the uenter of explosion, which can be direct- -

ly observed from Eqs. (IV.4.10) These singularities are located at X * X and

h.it (I X)l • , In terms of the reduced variables, F and Z these cin-
gularities are given by

F t.o and ( - C-VI (IV.4.11)

iii) Solution

"Er .• -utions (IV.4.1O) can be integrated numerically using Runge-Kutta fourth order

mi~othod, .ubject to the boundary conditio,-.s given by Eqs. (IV.4.2). An iterative

*L [ rccedure must be used to 'fini the correct value of ý\ which satisfies Eq.

,(IV.4.8), Since we cannct proceed widh the numerical integration till the cen-

tcýr of symmetry, due to the existence of the singultprity at the center, the so-

2]jtion is based on matching the numerical solution, frorn X 1 to ,

with an asymptotic formula fur the non-dimensional vL)n 4icy, F , However, it

cXan be assumed that th'? velocity distr-ibution near the center of symmetry is

"" linear, provided that the value of X -s iery small. The value of X ,must be

ijunda' priori for each geometrical syrirntry.
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The • domain in which we are interested ( 4 < is divided into

small steps, each step (~ A equals 0.005. Ths choice of the velues of

A% and AV is baned on the grid-independent solution.

If the solution at i ' ; is known, then the solution at • -

( dj.t = i+ A 3 is obtained as follows:

a) At a certain value of • , , the boundary conditions f,, *

and 9n (at • - 1) can be calculated from Eqs. (IV.4.2).

b) An assumed value of the decay coefficient '), is then used to inte-

grate Eqs. (IV.4.10) numerically. The integration is stopped at • ,

c) Applying the linear relation betweorn the non-dimensional velocity

and X from - to X 0, the velocity at the onter of symmetry can be

obtained by extrapolation.

"d) If the absolute value for the velocity at the center of symmetry, which

should identically be equal to zero, is greater than the required accuracy,

one may repeat the above procedure by changing the assumed •.. by A until

the required accuracy is obtained.

e) With the correct value of • determined, the flow field parameters

will be obtained, and then the values of the mass integral, 3% , and the ener-

gy integral, I , can be calculated using Romberg procedure.
f) The whole procedure is repeated For other values of ý until the solu-

tion is obtained for the whole range of .

It should be noted that forcing the solution to proceed to too small a value

of i will thr'ow the solution into the singularity X a 0. Also, during the

trial, of obtaining the correct \ , caution should be exercised lest the solu-

tion throw into one or the other of the singularities given by Eq. CIV.4.11).

IV. Results and Conclusions

In ordeoa to obtain a numerical solution, it has been assumed that the detona-

tin& medium is a stoichiometric methane-air mixture. Therefore, the value of
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Sfor such a mixture is 20.0231 and x - 1.3 (Kamel at al., 1979). For the

. specific case presented here, Eq. (IV.4.3) yields ýCq u 0.033786.

Figures IV.4.1a, b and c show the pressure profiles for planar, cylindrical

and spherical geometries with I a 1.3. At any specified value of • , the

pressure immediately behind the wave front is a maximum and falls off to a

nearly constant value near the center of symmetry, The fall-off in pressure

is greatest for sphbrical waves, with its greatest value of the decay coeffi-

client 2 . and least for the planar waves. As in the case of adiabatic point

explosions (Korobeinikov et al., 1969), the pressure ratio at the center de-

creases first to a minimum before ascending to its Chapman-Jouguat detonation

value.

Figures XV.4.2a, b and c and ZV.4.3a, b and c show the density and temperature

profiles, respectively. These sets of curves are bound to the right by the

self-similar solution for the adiabatic point explosion. It is evident that

the densmty at the center is always zero, corresponding to infinite tempera-

ture, a characteristic property of the solution obtained for an inviscid, non- -

conducting and non-radiating gas. As shown in Figs. IV.4.2, nearly all of the

"mass of the gas engulfed by the blast is concentrated close to the wave front

for the self-similar case and is then distributed gradually in the flow field

for ' > 0, until the Chapman-Jouguet state where the distribution of the

mass is more uniform. It is seen also that the fall-off in density is greatest

for spherical waves, the same tendency in pressure profiles, and least for

planar waves.

The particle velocites, 'as shown in Figs. IV.4.4a, b and c, have a maximum va-

lue immediately behind the wave front and decrease to zero at the center of

symmetry. At any given X and • , the spehrical flow velocity is the lowest.

With larger values of • , and for planar waves the velocity increases.

The integral curves for different values of ý ranging from d 0 to ' • 0.033,

are projected on the F - Z phase plane, for 0 - 0, 1 and 2 in Figs. IV.4.Sa,

b and c, respectively, Integral curves for • - 0 represent the solution at

the initial instance, while the initiation energy, E7 , is still the predomi-

nant parameter governing the flow field. They are, of course, identical to
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those for the self-similar point explosions in an inert gas (Sedov, 1957). As

the front decays and, concomitantly, the role of chemical energy becomes more

prominent, the value of Y increases until it, finally, asymptotically reaches

the steady Chapman-Jouguet value characterizing the explosion. Each integral

curve starts from a particular point on the Hugoniot curve, specified by the

conditions corrssponding to X I . It can be directly observed from Figs.

IV.4.5 that the solutions are free from singularities since the locii of the

singularity Z =(Ia) and the singularity F - 1 do not intersect with any

Sof the integral curves. Since a singularity does exist at the C-J condition,

the corresponding integral curve is not included. One, however, may approach

that condition sufficiently to get a good indication of the quantitative and

qualitative nature of the solution.

The mass integral, 3 , and the energy integral, 33 , are depicted in Figs.

IV.4.6 and IV.4.7, respectively, for different values of J . These curves

start from their respective values for the inert self-similar point explosions

at 0 -0 nd end at i - 0.033 which nearly equals • . The mass integral -

is used to checl the accuracy of the solution and its exact value is given by "

Eq. IV.4.6 that some error is obtained in the mass integral which reflects in-

accuracy in the density distribution within the flow field. This error, how-

ever, is expected due to the quasi-similar approximation which causes the solu-

tiuon to be accurate near the self-similar range and just behind the wave front.

The energy integral may be used to iterate on the decay coefficient, which is

another method to obtain the correct "k , but it is used here to obtain the

non-dimrenFicnal wave radius, • , using Eq. IV.4.5.

Ihe decay, cae-ficients, • , are shown as functions of ý in Fig. IV.4.8. An

it kative procedure was performed to obtain the correct value of ) which sa-

tisfies the condition of zero particle velocity at the center of symmetry. Any

aýssumed value of ýX less or greater than the correct one results in a numerical

iistabilaty. This occurs due to the two different singular points in the flow

fid., giv'e, by Eq. (IV.4.11), which would pull the integral curve to either of

them. It was observed that the numerical instability, due to these singulari-'

ties, may occur in two different forms. The dependent variables P and A may

tjKe negative values or may taKe values greater than the preceeding ones during
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the numerical integration of the governing equations. Therefore, it is recom-

mended to use the conditional "IF" statement insida the integration procedure

in the computer program to avoid the singular points and save computational

* time during seeking the correct X . It was also found that a deviation in

* the order of I x 10-4 in the correct value of )L may lead to the domain of
singularities. Because of the singularity F = 1.0, the numerical integration

of the governing equations was stopped at b = 0.02 for planar and cylindrical

waves and at • a 0.04 for spherical waves. A linear extrapolation was then

applied to ; in order to obtain F (0, 1 3. The solution was considered cor-
-4rect when FceA)I 4I x 10- . In order to achieve this accuracy, the improve-

ment in the value of 6 was in the order of 1 x 10 for planar waves, I x 10-6
-8

for cylindrical waves and 1 x 10 for spherical ones.

The non-dimensional radius, 3 , is plotted as a function of the parameter

in Fig. IV.4.9. It appears from this figure that, for all practical purposes,

the Chapman-Jouguet state can be considered as well established by the time

= 1. This means that the Chapman-Jouguet condition is practically achieved

when n = r . This radius, according to our definition of V , is deter-

mined by the value of the initiation energy, g-/ , rather than by the exother-

mic energy of the detonating medium, j . In view of the fact that the amount

of overdrivenness of the detonation wave is primarily affected by the initia-

tion unergy, this result isinot altogether surprising.

The results which are obtained here for the inviscid solution can be compared

with those obtained by Kamel et al. (1979). The same problem is solved by two

different methods. Kamel used the phase space method of solution, while in

this worK the quasi-similar technique of Oshima is used. The results in the

two cases are qualitatively similar. The quasi-similar technique fails to ob-

tain the values of the gasdynamic parameters at the Chapman-Jouguet state which

represents a singular point in the solution domain. Therefore, the solution is

stopped at 1 0.033 which is approaching the ýCT value of 0.033786. However,

the quasi-similar technique is easier to perform and it is faster to yield re-

sults in a general qualitative manner.

Figures from IV.4.lOa to IV.4.17 show the comparison between the results of the
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two methods for the pressure profiles, the density profiles, the temperature

profiles, the velocity profiles, the integral curves in the F - Z phase

plane, the energy Integral, LT , the decay coefficient, A ,'and the non-

dimensional radius, J , respectively, for different values of J . From

these figures, the two methods of solution appear close enough to warrant the

use of the quasi-similar approximation.

.4
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Figure Captions

Fig. IV.4.1 (a), (b) & (c)

Non-dimensional pressure profiles for planar, cylindrical and

spherical waves, respectively, at different values of j with

= 20.0231 and f = 1.3.

Fig. IV.4.2 (a), (b) & (c)

Non-dimensional density profiles for planar, cylindrical and

spherical waves, respectively, at different values of ' with

= 20.0231 and ? = 1.3.

Fig. IV.4.3 (a), (b) & (c)

Non-dimensional temperature profiles for planar, cylindrical

and spherical waves, respectively, at different values of •

with 9 20.0231 and • = 1.3. -

Fig. IV.4.4 (al, (b) S (c)

Non-dimensional velocity profiles for planar, cylindrical and

spherical waves, respectively, at different values of • with

= 20.0231 and ? = 1.3.

Fig. IV.4.5 (a), (b) & (c)

Integral curves in the F-Z phase plane for planar, cylindrical

and spherical waves, respectively, at different values of "

with . 20.0231 and • 1.3.

Fig. IV.4.6 Mass integral • as a function of ' with 9. 20.0231 and

5a 1.3 while 0 = 0, 1 and 2.

Fig. IV.4.7 Energy integral 3 as a function of J with = 20.0231 and

= 1.3 while • 0, 1 and 2.
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Fig. IV.4.8 Decay coefficient A as a function of with 20.0231 and

"" 1.3 while 0 0, 1 and 2.

Fig. IV.4.9 Non-dimensional radius 3 as a function of • with 9 20.0231-

and 6 = 1.3 while J 0, 1 and 2.

*'. Fig. IV.4.10 (a), (b) & Cc)

Comparison between the Quasi-Similar and Phase-Space methods of

solution for the non-dimensional pressurd profiles with

20.0231 and • : 1.3 while j 0, 1 and 2, respectively.

Fig. IV.4.11 (a), (b) & Cc)

Comparison between the Quasi-Similar and Phase-Space methods of -

solution for the non-dimensional density profiles with

20.0231 and If 1.3 while 0 = 0, 1 and 2, respectively.

Fig. IV.4.12 (a), Cb) & Cc) -

Comparison between the Quasi-Similar and Phase-Space methods of

solution for the non-dimensional temperature profiles with

9= 20.0231 and e = 1.3 while J 0, 1 and 2, respectively.

Fig. IV.4.13 (a), (b) & (c)

Comparison between the Quasi-Similar and Phase-Space methods of

solution for the non-dimensional velocity profiles with

9: 20.0231 and t = 1.3 while 0 , I and 2, respectively.

Fig. IV.4.14 (a), (b) & Cc)

Comparison between Quasi-Similar and Phase Space methods of so-

lution for the integral curves in F-Z phase plane with

= 20.0231 and W : 1.3 while 0 0, 1 and 2, respectively.

Fig. IV.4.15 Comparison between Quasi-Similar and Phase Space methods of so-

lution for the energy integral J with ¶ = 20.0231 and

1.3 while 0 = O, 1 and 2.
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Fig. IV.4.16 Comparison between Quasi-Similar and Phase Space methods of so-

lution for the decay coefficient A with 9 = 20.0231 and

= 1.3 while j 0, 1 and 2. '

Fig. IV.4.17 Comparison between Quasi-Similar and Phase Space methods of so-

lution for the non-dimunsional radius with 0. 20.0231 and

1.3 while 0 = O, 1 and 2.

i -
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SIV.5. ANALYSIS OF REACTIVE BLAST WAVES PROPAGATING THROUGH
GASEOUS MIXTURES WITH A SPATIALLY VARYING HEAT OF
DETONATION*

i] Introduction

In the actual situation, as occurring during an accidental spill of fuel gases

into open air, the initial conditions are no longer uniform and may be very com-

plex. In particular, the concentration of the fuel gases may vary with the di-

stance from the fuel source. This non-uniformity will affect the propagation of

any resulting detonation wave consideiably and is essential in studying real ex-

plosions, Geiger (1979).

In this section, the propogation of reactive blast waves through a medium of

spatially non-uniform fuel concentration is analyzed. For simplicity, the fuel

gas concentration distribution is assumed to be symmetrical with respect to the

center of explosion. With this assumption, blast wave propagation is a spatial- -J

ly one-dimensional problem. In addition, the change in concentration is expres-

sed by the change in energy released at the wave front. The chemical heat re-

lease $ is determined by the chemical composition and the thermodynamic states

of the reactants and products. In this analysis $ is assumed to aepend only on

the initial chemical composition which varies with distance from the explosion

center. While the transient diffusion problem may be used to determine the con-

centration profile, the distribution r ( r ), with r being the distance from

the fuel source is given a priori. For simplicity, changes in concentration due

to transient diffusion are neglected since the diffusional velocities are much

smaller than the shock wave velocity.

The effect of combustion heat release appears only in the boundary conditions at

the wave front and varies as the wave propagate•, so that the boundary condi-

tions include the unknown function which controls the propagation of the wave.

The formulation of the problem is applicable for the three geometrical symme-

tries: spherical, cylindrical and planar, while the results are obtained in the

cate of spherical waves only. The detonating medium is assumed to behave as an

invitLid purfect gas with a mean specific heat rati.o -

" This application is based on Ohyagi et al. (1981).
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ii) Problem Formulation

At a time t = 0 and a point 1 = 0 a finite amount of energy C" is liberated

by some energy source to form a non-steady, symmetrically expanding shock wave,

"i.e. a blast wave as is shown in Fig. IV.5.1. If the medium is an inert gas,

the blast wave decays to sound wave. In exothermic reactive media, if the

energy 4. exceeds a critical level, the waves decay to the Chapman-Jouguet

wave whose propagation velocity is determined by the chemical energy of the me-

dium.

In this problem, the concentration of the fuel gas changes with the distance g

from the center of explosion. As noted previously, the distribution utilized

here is that of chemical energy instead of that of the concentration. For sim-

plicity, the distribution is assumed to be symmetric with respect to the center

so that a symmetrical nature of the propagation is assumed. The chemical ener-

gy release at the wave front is given as a function of r.

Any explosive gas mixture exhibits detonability limits beyond which a detona-

tion can not be established. Here, the chemical reaction is always assumed to

be complete at the wave front, and the complex physico-chemical phenomena oc- - .

curring in the reaction zone is neglected. If the detonatility limits should

be taken into account, the value of the limiting concentration or the limiting

chemical energy should be given a priori.

In addition to these fundamental assumptions, one may assume that the change

in molecular weights of the fuels and the oxidizers do not affect the density

and the pressure of the medium ahead of the front.

The governing equations, Eqs. (11.20), (11.22) and (11.24), for a sourceless,

,:,viscid and thermally and calorically perfect with constant specific heats

:wjdiur, are reduced to
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(IV. 5.2)X•-• --, dz-r../•) o...

where is the decay coefficient defined in Eq. (11.14), wh~ich may be rewritten

as

in (IV.5.3)

The boundary conditions of the problem are that of the reactive medium with in-

stantaneous heat release at the wave front of strong detonation, which are given

by Eqs. H1I.93), (11.54) and (11.85). These eqijations may be rewritten as fol- -
lows:

p q) (IV.5.4)

JJ

,, b

~ - (IV- ..

lwther j. btig the dc y r oefficlentin cdeficaneatn q (I141,e wtithe wav e frowrittie-
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fined by Eq. (11.53) which is, in this case,

- (IV.5.6)

The heat release at the wave front, q , depends on the wave position, ,

"so that it is a function of • .

A condition to be satisfied at the center of symmetry is that the particle ve-

locity must equal to zero for all times, which is given by Eq. (11.112) as

F•J• '0 (IV.5.7)

The problem now is to solve Eqs. (IV.5.2) with the boundary conditions, Eqs.

(IV.5.4), as well as the compatibility equation, Eq. (IV.5.7), to find a func-

tional form of 'X(C) for a given function of O(r ) . For this purpose

the relation between r. and • must be given.

Integration of Eq. (IV.5.3) yields

- .. exp j (IV.5.8)

where • and • are arbitrary constants which express the initial condition -.

of the wave Mach number and position, respectively. When the value of '1 is

very small, the self-similarity of the flow holds at this initial stage. As

defined previously in Eq. (11.72), the initial position r is proportional

to i . By using Eq. (IV.5.3), . may be expressed in terms of .

Therefore, the boundary conditions, through .(r,) , as well as the basic

conditions include the unknown function Xvd)

Here, the function (n is assumed to be differentiable. Therefore,

the application of the quasi-similar concept yields the following ordinary

ýIifferential equations fur the governing equations, as given by Eqs. (III.23)-
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(111.25) where, for a sourceless flow field, all Os vanish.

X) A__ k + (J + 1 4 _-A o...-

S.9± + 2 0 D (I".5.9)hJJ

(F~~~~x)L _•+ . )+ AgG =o ._
dX "

where

,'. • ~~(IV,5.1l) ."-:

and

'p... 1  (IV.5.12)9

while

and -
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JK_ F(• •- _ t) 9. (1+ • _ ](IV.5.14)2- -� - Ad In r ?.

As an example, a simple exponential form of the function ( r C,) is adapted.

In the non-dimensional form, it is

"" q = 0p '- Qxp(-pJ) (IV.5.15)

where and 13 are non-dimensional parameters.

If 0 is positive, the fuel concentration becomes smaller with the distance from

the center and the chemical energy released at the wave front decreases exponen-

tially as the wave propagates.

In the case of Chapman-Jouguet detonation, • equals to zero, see Eq. (IV.5.5),

thus

To obtain a functional form for the decay coefficient in the case of C-J wave,

one max differentiate the above equation with respect to 3 and utilize the de-

finition of A given by Eq. (IV.5.3), to get

= (IV.5.16J

iii) Solution

The set of simultaneous ordinary differential equations, Eqs. (IV.b.9) is solved



numerically. Since 2(Y) is not known in-tially, the value of for each '-f
is first assumed and integrations are started from the wave front, X = 1,

where the boundary conditions are given by Eqs. (IV.5.4) to the center of ex-

plosion, X = 0, where the particle velocity is equal to zero. If this condi-

tion is not satisfied for the assumed value of \ , this value is corrected

and the procedure is repeated until Eq. (I\/5.7) is satisfied to the required

accuracy.

A difficulty, however, arises because the integrated term of k(¶) appears in
the boundary conditions. The steps of the solution in this case are as fol-

lows:

a) To obtain N(d) , • is assumed firstly to be equal to

b) From Eq. (IV.5.8), 3 = 1 and ' is calculaLod from Eq. (IV.5.6) so that

the decay coefficient is obtained by itUidLion.

c) Next, L is increased by small amount, A , and 3 is calculated by nu-

merical integration of Eq. (IV.5.8) with thu trzapezoidal rule.

d) Applying the same procedure as debcribUt:I Iýi, iously leads to the solu- .

tion X

d) The further solution will be found by iL~jptition of this procedure.

It should be noted here that the error in this procedure can be reduced if the

increment • is small.

iv) Results and Conclusions
S

The results obtained here are for the case of .phuricdl wave, . 2. The va-

luus of the other parameters used are:

20, = 0.001, 0.05, 0.1, 0.15, 0.2 and = 0.0001 and S = 1.4.

So, in these calculations, the medium nas bf*fr L,1Lnt chemical energy to support

a jetonation near the explosion center, withn L1 .. i..rgy released duuruasing ex-

ponuntially with distance.

It .hould be noted hre that if 6 is equal Li u the wave will ,lucay to the

e~ua •, •u he ave ill•,•cy t th
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F"

Chapman-Jouguet wave with a- = 0.026, calculated by using Eq. CII.94), and
the problem is reduced to that discussed briefly in section (IV,4).

The step size for the Runge-Kutta integration for X - direction, &X , is

chosen to be 0.01. For the Y - direction, the step size &g is 0,0001.

Figure IV.5.2 shows the decay coefficient •(•) for each p . When ý is

equal to zero, the self-similar solution is fulfilled so that \ is equal to

*÷ i = 3. As ý increases, X decreases generally which means that the
wave approaches the steady wave. For small values of p , as 0.001, the heat

liberated at th'e wave front is almost constant and the wave behaves as a re-

active blast wave in the uniform combustible mixture for the regime where the

solution can be found. It seems to deuay to the C-J wave ( qcT = 0.026) but

the solution can not be found near C-J state because of the singularity at

the wave front in the C-J wave. In the C-J wave, the gradients of F ,

and 9 in the • - direction become infinity as indicated previously in -

tion (IV.4). As p increases, decreasess and a transition frum the re-

active blast wave to the non-reactive one occurs with increasing • . For

S= 0.05, X has a minimal value of 1.09 at the value of Lj M 0.U5. It

appears that the wave, decaying as a reactive blast wave, loses its energy as

it propagates and in turn decays more rapidly as a non-reactive blast wave.

But for this case, the solution can not be found for V > 0.07 because of the

limit of the numerical precision. For P = 0.1, 0.15, 0.2 and 0.5, the com-

plete solutions show the transition from reactive blasts to non-reactive ones.

For • 0.5, the solution is almost identical to that for Cý Q 0 (or -, 3,
0

i.e., the non-reactive blast wave except for very small values of q . The

values oif the decay coefficient for p > 1, when ý > 0.35, or -i < 1.7, are

nearly the same because the chemical energy % , there, is almotL equal to

zero. The dashed curve shown in this figure represents the Chaprndn-Jouguet de-

cay coefficient, , for 3 0.1, as a function of ' which is &gven by

Lq. (IV.5.16j. The C-J decay coefficient for 1 = 0.1 variEs with V because

* ne chulnical energy Z changes with , and it can be called as the local C-J

decay cotfficipnt.

Figure IV.5.3 shows th)at the shocK >jch number, I , decruasem with an increase

in th. no,i-rimensional radius, . The curves for all # 's are calculated
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with the same initial condition, i.e., for 1 2., rl 1 100. For f : 0.001,

the Mach number M seems to decay to the Chapman-Jouguet value, M = 6.202, 6

corresponding to = 0.026. In reality, it decays to the sound wave as

the wave propagates infinitely apart from the center. As p increases, r".

seems to decrease to unity in the far field. From Fig. IV.5.3, it can be seen

that for I > 25, ri is less than 1.7 for > 0.1. Therefore, in the re-

gime 3 > 25, although . is almost zero for those /3 's, t1 for larger )a

is greater than that fur smaller P Is. It can be said that this is the effect

of history which the wave has experienced. The dashed lines in Fig. IV.5.3 in-

dicate the Chapman-Jouguet Mach number obtained by K = 0. The C-J Mach number -

for a certain p varies with I because q is changing and it can be considered

as the local C-J Mach number. It is evident that the Mach numbers for all 13 's

decay to their own local C-J values.

Figures IV.5.4 through IV.5.6 show the variations of the peak values, just be-

hind the wave front, of the non-dimensional density, velocity and pressure with

respect to . They change from the values of the strong blast wave limits

(i.e. h. = 6.0, f, = 0.8333 and =r1  0.8333 for 2 = 1.4) to the values of

the C-J wave (i.e. kn = 1.683, fm = 0.4508 and 0.4244 for • 1.4 and

. q. = 20) for the reactiVe blast wave in the uniform medium, while they ap-

proach the values of sound waves (i.e. km = 1.0, Fn = 0 and 9n : ) for the

wave in the non-uniform medium. From Fig. IV.5.4, it can be said that in the

early stage the peak density at the wave front decays more rapidly for small

than for large P with respect to the distance from the center. In the early

stage, ri is determined by the initiation energy rather than the chemical ener-

gy. For thO same M , the peak values for small chemical energy is larger

than for large q. as is calculated by the Hugoniot relation. In the later

stage of propagation, fi approaches to the local C-J value and it it determined

by the chemical energy. Therefore, the peak density for large p has a tenden-

cy to decay more rapidly than that for small p .

,uL'eý3 !V.5.7a-c show the typical density profiles normalized with respect to

tr• pedk values at the wave front for a -*. (or {O = 0). j = 0.2 and 0.001.

Tnrv non-oimernsional intity near the center increases as ý -: 1 for p. o and

S.U (rere, the profiles of )3 0.2 for • > 0.25 are omitted because
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they are almost the same as those for - ). For P 0.001, the non-

dimensional density increasoq very little as • - C'J(when I = 0.022,

0.846). In these calculations of the point blast wave, the density

near the center remains zero, corresponding to the fact that the velocity

gradient does not vanish. If it is possible to extend the solution for I
larger • , the density may increase more near the center.

Figures IV.5.8a-c show the particle velocity profiles. The core in which

the velocity vanishes is not accurate in these figures. This is a consequence

of the quasi-similarity approximation since it is expected that for ' 0

and V > 0.6 then Fc(0 has a negative region near the center.

Figures IV.5.9a-c show tha pressure profiles for $3 -o o 0.2 and

P :0.001, respectively, where the piofiles exhibit the same general trend

as in previous cases.

In this model using the quabi-similar approximation, there have to be some in-

accuracies in thE gasdynamic profiles. However, the decay coefficient obtai-

ned seems to be reasonable. In addition, this method permits the use cf any

model for the heat release function Cr•) and it makes it very convenient

to find the decay coefficient for the wave front.

In this example, is taken to decrease exponentially with distance from the

center, the nature of wave propagation is determined by the ratio of the cha-

racteristic radius of the initiation energy, r , to that of the decreasing

initial chemical energy, 1 , and it is revealed that for small .s , such as

0.O0 and 2.C5, the wavc front behaves as a detonation wave and for large va-

lues of • , such is 0.5, it uecays as a non-reactive blast wave.

-4"
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"* Figure Captions

* Fig. IV.5.1 Configuration of a spherical blast wave.

Fig. IV.5.2 The decay coefficient 2. cs a function of 1 for different values

of P with i m 1.4 and r0 20 while i 2.

Fig.. IV.5.3 The shock Mach number tj as a function of the non-dimensional

shock radius j for different values of p with 5 1.4 and

9= 20 while = 2.

Fig. IV.5.4 The density ratio across the wave front as a function of the non-

dimensional shock radius I for different values of with

1.4 and Or - 20 while 1 - 2.

Fig. IV.5.5 The velocity' ratio across the wave front aB & function of the non-

dimensional shock radius T for different values of p with

1.4 and 2. 02 while 3 2.

Fig. IV.5.6 The non-dimensional pressure at the wave front as a function

of the non-dimensional shock radius for different values of

with • 1.4 &nd = 20 while • 2.

Fig. IV.S.7 (a), (b) & c)-

The density profilas at different values of for o =a. 0.2

and 0.001, respectively, with • 1.4 ana 20 while j 2.

' V. .d (a), ibJ & Ic) -

The pdrticle velocity piofiles at different values of ' for

0.2 and 0.001, respcctively, with •a 1.4 and 9. 20

-e Pr-:ssure prcFiles at different values of • for = ,,
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0,2 and 0.001, respectively, with • = 1.4 and 20 while
2.
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IV.6 BLAST WAVES IN A DETONATING MEDIUM WITH TRANSPORT
PROPERTIES TAKEN INTO ACCOUNT*

i) Introduction

It is evident from previous applications, for both reactive and non-reactive

blast waves, that the solution fails near the center of symmetry since the

temperature goes to infinity, while the density of the gas tends to zero. In

order to improve the solution neai the center, one has to taka the effects of

viscosity, hea. conduction and radiation into account.

In this section, the non-self-similar problem of a point explosion in a deto-

nating gas with viscosity, thermal conduction and radiation effects is analy-

zed. Radiation has been included by assuming a diffusion radiation mode for

an optically thick grey gas which, as a consequence, leads to radiation terms

that are mathematically similar to those of thermal conduction. The trans-

port coefficients are assumed to be proportional tc appropriate powers of tem-

perature. A boundary layer-like region is assumed to exist near the blast

orlein where all the transport effects are concentrated, thus permitting the

rest of the flow field to be treateo in thc usual inviscid manner. After the

inviscid solution has been obtained, series expansions of the gasdynamic para-

meters are then applied to the inner region equations which, in turn, reduce

to algebraic relations. The structure of the non-self-similar flow fields is

then fully determined by matching the approximate solution for the inner re-

gion with that for the inviscid outer region. The three geometrical symme-

*ries of blast waves are considered and the detonating medium will be treated

as a perfect gas with a mean specific heat retio, • .

.) Problem Formulation

The three conservation equations of mass, momentum and energy, taking into ac-

count poi6ble sources of mass, momentum or energy that may aftect the flow

rLeld, are given by Eqs. (II.1) - (11.3).

For tne case considered here, the rate of mass supplied per unit mass of the

mixtur• is zero. Thus

"Tuas application is basec Qn Abdel-Raouf (1982).
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•M= o(IV. 6.1)

when taking trie effect of thermal radiation, by assuming a diffusion radiation

mode for an optically thick grey gas, thermal conduction and viscous forces

into account, the momentum and energy 6uurce terms, as given by Kamel et al.

(1977a) take the form:

4r A
,,,% . ) IV .6 .2 )

9nd

+3

E-
+ -(ri

•r 3- - a-r r• - r

+ -3 • 3 ) - -

+ •_ < # • s ) __TT }(!V.6.3)
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where T is the absolute temperature and a- is the Stefan-Bo]tzmann constant,

while ,a. , K and CA are the coefficients of viscosity, thermal conduction and

absorption, respectively. These coefficients, being thermodynamic properties,

are functions of temperature and pressure. However, the pressure is very near-

ly constant in the inner region near the center of symmetry where the transport

properties predominate. Therefore, these coefficients may be considered as

functions of temperature only and could be assumed to vary with the local tem-

perature, as given by Kamel et al.(1973a), in the following manner:

K = K.(M) and a,(-i) (IV.6.4J

where x and $ are constants, and subscript o refers to some known state. a

One may then define the following non-dimensional parameturs of the transport

properties

.oand NO a k. (IV.6.5)

e h4,,d ....... th, Prant•, iibur'; NO the radia-

tion-conduction parameter; Cp the gas specific heat at constant pressure and

ro is the characteristic length o' the explosion.

The basic equations of mass, momentum and energy, in non-dimensional form, Eqs.

(II.20), (11.22) and (11.83), with the definitions of Eqs. (11.21), (11.23)

and (II.84), under the assumption of uniform ambient atmosphere, are then re-

dLced to

(f-~') -~h=01

F -rX k (IV,.6.6)

6
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and

-+ - - I

with

I _ nd 'AS f Ai ~ F f (IV.5.7)

Substitution from Eqs. (IV.6.2) - (IV.6,S) into Eq. (IV.6."i yield"

F +~.L~~~* CM 5CrI dK+

-%-

- -f-n IV.6.8)

and

1 . • ' Da-"

± ~ ~ ~ I - -OXy....

+E f'~ .+ ~ _j9 (2_ () - ý I~

j 9 -4 I -~i _ 9 A
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where

i Re

4 5-P (IV.6.10)

Re PraO~

ard

ojot

The boundary conditions of detonating blast wave problems are given by the Hugo-

niot relations, Eqs. (11.93), (11.54) and (11.85). These equations may be re-

written as

112

h (IV.6.11)

and •

iT,, reLu,;tion of thiý govur'ning equitionri, Eqs. (IV.6.6), to s'3if-•imrlarity

i tac. t h Z• doterrfdniatiorn cf the value,5 of tra constants L and P , as g•ven

wy KamA1 (,L al. (1977d), ý;nch:l :zjio etiu,.Jl to-,
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o(="(LL-) and (IV.6.12)

The coefficients of viscosity, thermal conduction and absorption which vary

with temperature as given by Eq. (IV.6.4), must be independent of time, since

they are properties of the flowing substance. Therefore, the constants d( and

P must have the same values, given by Eq. (I/.6.12), that dre independent of

Swhich are also valid for the non-self-similar case.

The mass and energy integrals, in the case of inviscid medium, have the forms

given by Eqs. (11.65) and (11.96) respectively, which are

13- -" -. - (IV.6.13)

and

+ (IV.6.14)

while thu decay coeff'iuient • is given by Eq. (11.97) as

,nicln f-,Fr self-similar cases, reduces to

'A. JIV.6,16)
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The quasi-siniilar technique, when applied, reduces the basic equations, Eqs.

(IV.6.b), to ordinary differential ones, given by Eqs. (III.23) (11.25).

Noting that 0= , these equations in this case reduce tc

andx

-e- ~(I'd.6.17)

and

+ A. 9S<

* where

13 a~ o.t

and

with

Sno * in Eqý. t ntj oU-
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tains, as given by Eqs. (111.26) - (111.28) when 9t, 0 ,

i:and
1. x..".

The solution procedure is divided into two steps. First, the inviscid flow

field i6 obtained by solving the conservation equations, Eqs. (IV.6.18). ne-

glectirg ,• cinr~port uffe,,ts (i.e. 95- 0 L ) and the problem is reduced

to the one discussed prtviously in section (IV). This solution is obtained

in order to determine k . Then the effect of transport phenomsna is accoun-

tao for by assuming the fiow field to consist of two regions, namely an outer

reg>•ion and ar inner region, with transporc effects existing in the inner .re-

giorn o,•ly (Kanel et al., 1977a). Series expansions fov the gasdynamic par.jxne

t ii •L u,:e, to obtain the inner region solution which m,-&t be matched with

;r tho inviscid outer region.

I,8 u minitude analysis to the conservation equationl qos perfor'-Tid by

X,:' ." , to L iiplity them in the inner region, T~j ;tin icu-lu-

,] l vic.ity terms are of negligible ccntribution aiitj w%,.y t 0,, c
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dropped from the momentum and energy equation.

b) The momeotum equation rbduces to:

i -•. =a [IV.6.19)

* which indicates that the pressure is constant throughout the inner region. The

• continuity equation remains unchanged, as given by the first of Eqs. (IV.6.6),

while the energy equation becomes:

~~(q at 4 (---÷ "•*• IV.6.20)

where

Fur the inner region solution, instead of following the complicated procedure

of find-rng the value of 5 which contains second odaer differentiations by

iteration, one can Gbtain an approximate solution, leading to at least a good

qualitative description of Lhe flow field, by assuming that the gasdynamic

parameters may be expanded in a power series in the form

+N++ 0(X•4),
0 3

+ +IV..21)

h k0 + AxX ÷L1 X
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, and
L

where the coefficients of the powers of X are functions of d only. A com-

patibility equation which must be satisfied by the correct solution, Eq.

(11.112), is that the particle velocity at the center of symmetry must be

equal to zero, that is f(o.,d) 0 0. Immediately it is shoý,, that 0.

At the center of symmetry, however, one has:

at X at 0

Equation (IV.6.19) with the above equation may yield:

at

If thib uquation is to be satis'ied then k, must alo vanish. Substituting

Eqs. (IV.6.21) into the f'IML of Eqb. (IV.6.6) and Eq. (IV.6.20), and equa-

ting the coefficients of the iamne powers of X to zero, one obtains from the

continuity equation:

ho

'.th. priine inuicdteg differentiation with resper.t to • , also P o
A

/13 0 dflhi

3•0

-~~~ h±(.L)~ ~.(.'A/~IV.6.23)
.2 3
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From the energy equation, one gets

4.[' t (IV.6.24)

The gasdynamic parameters F and A. given by Eqs. (IV.6.21), are now reduced

to:

nIV.6.25)and

In dddition to algebraic Eqs. (IV.6.22) - (IV.6.24) one has the three equa-

tions that match the inner solution to the outer solution, namely

hp ho A, K2* IV.6.26)

and

where X is the % boundary of the inner region.

Equations (IV.6.22), CIV.6.23), (IV.6.24) and (IV.6.26) form a systam of six

equations that may be solved simultaneously for F1  '

and , for a particular shocK strength .
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The derivatives of the coefficients h. / and with respect to fI can

be put In a finite difference form as:

. .

A A

(IV.6.27)

and

To develop ",he computational procedure, the problem is solved first in the

self-similar case by putting J equal to zrro in Eqs. (IV.6.22) - (IV.6.24).

These equations reduce to

.2

Fi~o

4 o, ,ik./•k (3)3
(IV.G.28)

and

After some algebraic manipulation, one can easily obtain the following equa-

tions for the aeterninatiun of te coefficients , nd /,, in
tuims oF the values of the gasdynamic parameters at the matching point .

/and
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I

land fEs(I6.).Telteeqainmyntbsasfe tapcI J

K and

Since all the coefficients depend on the matching point pararn~ters, an itera-

tive procedure is required to find the matching point X,, which satisfies the-

last of Eqs. (IV.6.28). The latter equation may not be satisfied at a speci-

fi=d step of the numerical integration procedure, Thus, assuming a i-

near relation between the residual value of that equation, Rand X , the

correct value of the matching point X., can be obtained by interpolation, as

shown in Fig. IV.6.1. In addition, the following relaticns were used:

* and

where is the residual value of thu' last of Eqs. (IV.6.28) at X'

The corresponding values of !th,., gasaynarnic parameters at the matching point

are also daermirn-Id by ir-nerpolation, conc3idering straight line relations bet-

ween their values and Forr an LxowýlC, Fig. IV.6.2 shows how the particle
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velocity at the matching point, E , is determined. Thus

K P -,2 ., -f ,)( •,,-z•)
(A& X)

F.- __, < x I
(A X)

(IV.6.32)

and

g o (4 k ) -

Onc2 the matching point parameters are determined, the coefficients go -o

A. anu e dr'L also determined to dafine completuly the inner region solu-3
tion fcra te self-similar problem.

One can then proceeo to obtain the solution for the non-self-similar problem.

At o spicified value of I- f , fr.m Eqs. (IV.6,221, (IV.6.23) and (IV.6.27),
after' somL algebraic manipulations, one may obtain the coefficients o

and . in terms of the values of the gasdynamic parameters at the

matching point as follows:

o (/ 4 )b ) I

(.V,63h,. /
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and

J _

where

and

Equation (2V.6.24) must be satisfied for the correct values of" the gasdynamic

parameters, and thus one follows the same procedur-e which is used for the self-

similar problem.

The equation which corresponds to Eq. (IV,8.30) will take the form:

V+

+ 2., (O-"+ 1). (1* / o, ((V.6.)4)

Equations (IV.6.31) and (IV.6.32) are uý,ed to obtain the gdsdynamic parameters

at the matching point X,, and thus the coefficients •^,• ,and .
3
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Having computed all variables at Y = , one can proceed to obtain the solu-

tion at t• = j*,j by applying the same procedure. The procedure is then re-

peated to cover the whole • domain.

iv) Results and Conclusions

In order to obtain a numerical solution, it has been considered that the deto-

nating medium is a stoichiometric methane-air mixture, for which . = 20.0231,

1.3 and = 0.033786 (see section (IV.4)).

The values of the parameters of transport properties which have been used to

obtain the inner region solution are Re = 10 4, Pr- = 1 and NO z 1.

Introducing the effect of transport properties irigide the inner region, the

density at the center of symmetry, as expected, took the non-zero values shown

in Figs. IV.6.3 and the temperature took finite values shown in Figs. IV.6.4

for different geometries and the indicated specific values of Re , Pk- and

No . The dotted range in these curves expresses the continuation of tne in-

viscid solution of the outer region if transport effects were to Oe neglected.

Since the energy inside the flow field is conserved, the solution of the inner

region rearranges the temperature distribution inside the inner region only as

shown in Figs.IV.6.4. One may expect that the rearrangement of such tempera-

ture inside the whole of the flow field can be achieved oy considering the

transport effects in the outer region, which would have a rather small contri-

bution.

The velocity profiles for 0.005 4 d < 0.033, as shown in Figs. IV.6.5, extend

into negative values of P indicating that the particles, after their initial

outward shift due to the passage of the front, returns towards the center of

the flow field. This occurs due to the relaxation following the strong explo-

sion which causes nearly all the mass of the blast wave, immediately after ex-

plosion, to be concentrated close to the wave Front.

It should be noted that the pressure profiles a're not lifferent from those of

the inviscid case, Figs. IV.,.1. This -esult is based on the assumption that

the pressure is constant throughout the inner regiot, This atsumption was up-

neld by Kamel et al.(177a) when he found that the pressure distribution is
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insensitive to the effects of both thermal conduction and radiation.

The viscosity and conductivity exponent o is taken to equal its self-similar

values of -1, 0 and 1/6 for planar, cylindrical and spherical geometries,

respectively, while the radiation exponent (3 is considered to equal 7/2, 1

and 17/6 for the same geometries, as given by Eq. (IV.6.12). Therefore, at a

certain temperature, the thermal conductivity is greatest for the spherical

wave and least for the planar one, while the ahsorption coefficient ca.e must

be lowest for the spherical wave and highest for the planar me. This means

that the dissipation effects are greatest for spherical waves and least for

planar waves.

Figure IV.6.6 shows the thicKniss of the central inner region, X,. , as a

function of the parameter Y for plinar, cylindrical and spherical geometries.

As expected, the thickness of the inner region has a maximum value at d 0.

immediately after explosion, with highest heat dissipation and then decreases

as the wave front decays. At any specified value of Y , the thickness of

the ineer region is greatest for the spherical case, with its greatest dissi- 4

pative effects, and least for the planar wave.

Figures IV.6.7 show the integral curves in the F - Z phase-plane, For the
inner region, for planar, cylindrical and spherical geometries. As shown in

these figures, the integral curves, within the range 0.005<A U.033, extend

into negative values of F , the same tendency in velocity profiles.

Figures from IV.6.8 to IV.6.12 give the relations between the coefficients

S ko K a• P and f and the parameter 1 , respectively, for dif-

ferent blast wave geometries.

Another important result of this analysis is that, when the mass integtal, 3'
and the energy integral, J3 , were evaluated with cransport phenomena taken

into account, they differ very slightly from those of ihe inviscild medium.

This directly indicates from Eq. (IV.5.14) that the shock wave similarity

front crajectory remains nearly unaffected by transport pherionena and dues

not differ from that of the invi,cid medium.

The sharp transition between the inner igion," woerv tr~rmrt pnencrnena arei

most important, and the outer inviscid rcgi!,i is as ,ccat,, uf coui se, with a
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physically inadmissible idealization. However, smooth transitions may be

achieved if series expansions of the gasdynamic parameters of higher powers

for the inner region solution are used and if the outer region contains al-

so the transport effects.

i-'
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Figure Captions

Fig. IV.6.1. A schematic diagram shows how the correct value of the matching

point %, is obtained.

Fig. IV.6.2 A schematic diagram shows how the particle velocity at the mat-

ching point • is obtained.

Fig. IV.6.3 (a), (b) & (c)

Non-dimensicnal density profiles of blast waves in a detonating

methine-air mixture with tr.ansport phenomena taken into account

for Re 104, _r = 1, No I and ' : 1.3 while j 0,

1 and 2. respectively.

Fig. IV.6.4 (a), (b) & Mc)

Non-dimensional temperature profiles of blast waves in a detona-

ting methane-air mixture with transport phenomena taken into ac-

count for Rf =10 i4,P =1, No = 1 and 1.3 while

i o0, 1 and 2, respectively.

JU

Fig. IV.6.5 (a), (b) & (c)

Non-dimensional velocity profiles of blast waves in a detonating

methane-air mixture with transport phenomena taken into account

for Re = 10 , 1P =, No = I and 1 = 1.3 while J 0, '1 and

2, respectively.

Fig. IV.6.6 Nor-dimensional thickness of the inner region X~ , as a function

of • , of blast waves in a detonating methane-air mixture with

trensport phenomena taken into account lor Re = in 4, r= I,

No 1 and • = 1.3 while 4 : 0, 1 and 2.

Fig. IV.6.7 ia), (b) & (c)

Integral curves in the F-Z phasu plane for the inner region, for

different values of L , of blast waves in a uetonrting ,nethane-
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air mixture with transport phenomena taken into account for

Re O Pr = i, No 1 and " 1.3 while 0 O, 1 and

L-, respectively.

Fig. IV.6.8 The coefficient 90 as a function of the parameter 1 for

4 " , I and 2.

Fig. IV.6.9 Th,.• coefficient Ie as a function of ýne parameter j for

4 - O, I and 2.

Fig. IV.6,10 The co~ffirient kA as a function of the parameter • for

4 C, I and 2. "

Fig. IV.6.11 The ,oefficient ý as a function of the parameter 1 for
S, 0 , 1 and 2 .

Fig. IV.6,12 The coefficient F as a function of the parameter i for

4 * 0, 1 and 2.
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